Reduced-Order Wave-Propagation Modeling Using the Eigensystem Realization Algorithm

  • Stephen A. Ketcham
  • Minh Q. Phan
  • Harley H. Cudney
Conference paper

Abstract

This paper presents a computationally efficient version of the Eigensystem Realization Algorithm (ERA) to model the dynamics of large-domain acoustic propagation from High Performance Computing (HPC) data. This adaptation of the ERA permits hundreds of thousands of output signals to be handled at a time. Once the ERA-derived reduced-order models are obtained, they can be used for future simulation of the propagation accurately without having to go back to the HPC model. Computations that take hours on a massively parallel high performance computer can now be carried out in minutes on a laptop computer.

Keywords

Singular Value Decomposition High Performance Computing Random Access Memory Hankel Matrice Markov Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ketcham, S.A., Parker, M.W., Cudney, H.H., and Wilson, D.K.: Scattering of Urban Sound Energy from High-Performance Computations. DoD High Performance Computing Modernization Program Users Group Conference, IEEE Computer Society, pp. 341–348 (2008).Google Scholar
  2. 2.
    Cudney, H.H., Ketcham, S.A., and Parker, M.W.: Verification of Acoustic Propagation Over Natural and Synthetic Terrain. DoD High Performance Computing Modernization Program Users Group Conference, IEEE Computer Society, pp. 247–252 (2007).Google Scholar
  3. 3.
    Ho, B.L., Kalman, R.E.: Effective Construction of Linear State-Variable Models from Input–Output Functions. Regelungstechnik, 14, 545–548 (1966).MATHGoogle Scholar
  4. 4.
    Juang, J.-N., Pappa, R.S.: An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction. Journal of Guidance, Control, and Dynamics, 8, 620–627 (1985).MATHCrossRefGoogle Scholar
  5. 5.
    Juang, J.-N., Cooper, J.E., Wright, J.R.: An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification. Control Theory and Advanced Technology, 4, No. 1, 5–14 (1988).Google Scholar
  6. 6.
    Juang, J.-N.: Applied System Identification. Prentice-Hall, Upper Saddle River, NJ (2001).Google Scholar
  7. 7.
    Phan, M.Q., Ketcham, S.A., Darling, R.S., Cudney, H.H.: Superstable State-Space Representation for Large-Domain Wave Propagation. Proceedings of the 4th International Conference on High Performance Scientific Computing, Hanoi, Vietnam (2009).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephen A. Ketcham
    • 1
  • Minh Q. Phan
    • 2
  • Harley H. Cudney
    • 1
  1. 1.Engineer Research and Development CenterHanoverUSA
  2. 2.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations