Abstract
The notion of granularity is used in several areas of computing. In temporal databases, granularity relates to the fact that the time frame associated to an event of interest (e.g., an accident) can be envisaged at several levels of detail (e.g., hour, day, month, etc.). Similarly, granularity in data warehousing is the level of detail at which facts (e.g., sales) are captured in dimensions (e.g., product, store, and day). However, there is no commonly-agreed definition of spatial or spatio-temporal granularities. Sometimes, the term spatial granularity is confounded with multiple resolutions. Further, the few proposals about them are mainly focused on the vector data model. In this paper, we define spatial and spatio-temporal granularities for raster data models. In our framework, relations and operations between spatial and spatio-temporal granularities are also defined.
Keywords
- Space Domain
- Raster Data
- Poral Granularity
- Temporal Granularity
- Time Granule
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Belussi, A., Combi, C., Pozzani, G.: Formal and conceptual modeling of spatio-temporal granularities. In: Proceedings of the International Database Engineering and Applications Symposium, pp. 275–283. ACM (2009)
Camossi, E., Bertolotto, M., Bertino, E.: A multigranular object-oriented framework supporting spatio-temporal granularity conversions. Int. J. Geogr. Inf. Sci. 20(5), 511–534 (2006)
Cattell, R.G.G., Berler, D.K.B.M., Eastman, J., Jordan, D., Russell, C., Schadow, O., Stanienda, T., Velez, F. (eds.): The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers Inc., San Francisco (2000)
Erwig, M., Schneider, M.: Partition and Conquer. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 389–407. Springer, Heidelberg (1997)
Frank, A.U.: Map Algebra Extended with Functors for Temporal Data. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 194–207. Springer, Heidelberg (2005)
Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000)
Malinowski, E., Zimányi, E.: Advanced data warehouse design: From conventional to spatial and temporal applications. Springer, Heidelberg (2008)
McKenney, M., Schneider, M.: Spatial Partition Graphs: A Graph Theoretic Model of Maps. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 167–184. Springer, Heidelberg (2007)
Mennis, J., Tomlin, C.D.: Cubic map algebra functions for spatio-temporal analysis. Cartogr. and Geogr. Inform. 32(1), 17–32 (2005)
Ning, P., Wang, X.S., Jajodia, S.: An algebraic representation of calendars. Ann. Math. Artif. Intel. 36(1-2), 5–38 (2002)
Shekhar, S., Xiong, H. (eds.): Encyclopedia of GIS. Springer, Heidelberg (2008)
Tomlin, C.D., Berry, J.K.: A mathematical structure for cartographic modeling in environmental analysis. In: Proceedings of the 39th Symposium of the American Congress on Surveying and Mapping, pp. 269–283 (1979)
Wang, S., Liu, D.: Spatio-temporal Database with Multi-granularities. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 137–146. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pozzani, G., Zimányi, E. (2012). Defining Spatio-Temporal Granularities for Raster Data. In: MacKinnon, L.M. (eds) Data Security and Security Data. BNCOD 2010. Lecture Notes in Computer Science, vol 6121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25704-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-25704-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25703-2
Online ISBN: 978-3-642-25704-9
eBook Packages: Computer ScienceComputer Science (R0)