Binomial Distribution

  • Ludomir M. Laudański
Part of the Intelligent Systems Reference Library book series (ISRL, volume 31)


Mysterious origins of the binomial distribution: binomial theorem (binomial coefficients) and combinatorial rules. Pascal’s Arithmetical Triangle, Bernoulli’s Trials. [John Arbuthnott’s contribution]. Acquaintance with the binomial distribution – numerical examples, drawings of the distributions [their properties]. Jacob Bernoulli’s Weak Law of Large Numbers. How to derive Poisson-Bortkiewicz distribution. Famous example from the chronicles of the Prussian Cavalry [Ladislau von Bortkiewicz’s contribution: the law of small numbers]. Negative binomial, a revival of old ideas.


Poisson Distribution Binomial Distribution Negative Binomial Distribution Combinatorial Rule Bernoulli Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stigler, S.M.: The History of Statistics – the Measurement of Uncertainty before 1900. The Balknap Press of Harvard UP, Cambridge (1986)zbMATHGoogle Scholar
  2. 2.
    Edwards, A.W.F.: Pascal’s Arithmetical Triangle – The Story of a Mathematical Idea, pierwsze wydanie - w Anglii 1987 – Charles Griffin & Company Ltd., London, a od roku 2002 było drukowane jako Paperback, p. s.202. Johns Hopkins University Press, Baltimore Google Scholar
  3. 3.
    Леонид Ефимович Майстров: Теория Вероятностей – Исторический Очерк, Наука, Москва (1967); also known as the English edition: Maistrov, L.E.: Probability Theory - A Historical Sketch. Academic Press, New York (1974) Google Scholar
  4. 4.
    A complete translation of the Ars Conjectandi is available as Jacob Bernoulli: The Art of Conjecturing, together with Letter to a Friend on Sets in Court Tennis, trans. by E.D. Sylla, p. 580 $57.60. Johns Hopkins University Press, Baltimore (2006) Google Scholar
  5. 5.
    Arbuthnott, J.: An Argument for Divine Providence, Taken from the Constant Regularity Observ’d in the Births of Both Sexes. Phil. Transactions (1683-1775) 27 (1710-1712), 186–190 Google Scholar
  6. 6.
    Pascal, B.: Traite du triangle arithmetique. Desprez, Paris (1665)Google Scholar
  7. 7.
    Boyer, C.B.: A History of Mathematics. Princeton UP (1985) Google Scholar
  8. 8.
    Wilenkin, N.J.: Kombinatoryka (in Polish). PWN, Warszawa (1972)(translated from Russian, Nauka, Moscow 1962) Google Scholar
  9. 9.
    Gerstenkorn, T., Śródka, T.: Kombinatoryka i rachunek prawdopodobieństwa (in Polish: Combinatorics and Probabilisty), 3rd edn. PWN, Warszawa (1976)Google Scholar
  10. 10.
    Flaschmeyer, J.: Kombinatoryka – podstawowy wykład w ujęciu mnogościowym (in Polish: Combinatorics, basic theory by using theory of set). PWN, Warszawa (1974) (translated from German Kombinatorik VEB, Berlin 1969) Google Scholar
  11. 11.
    Pogorzelski, W.: Zarys Rachunku Prawdopodobieństwa i Teorii Błędów (in Polish: An Outline of Probability and the Error Theory). Towarzystwo Bratniej Pomocy Studentów PW (edited by the students organization soon confiscated by the communist government), Warsaw, pp. 1–100 (1948) Google Scholar
  12. 12.
    Uspensky, J.V.: Introduction to Mathematical Probability, p. s.411. McGraw-Hill, New York (1937)zbMATHGoogle Scholar
  13. 13.
    Stigler, S.M.: The Dark Ages of Probability in England: The Seventeenth Century Work of Richard Cumberland and Thomas Strode. International Statistical Review / Revue Internationale de Statistique 56(1), 75–88 (1988)zbMATHCrossRefGoogle Scholar
  14. 14.
    Stigler, S.M.: Chance is 350 Years Old 20(4), s.33–s.36 (2007) Google Scholar
  15. 15.
    Bayes, T.: An Essay towards solving a Problem in the Doctrine of Chance. Philosophical Transactions of the Royal Society of London 53, 370–418 (1763)Google Scholar
  16. 16.
    de Moivre, A.: The Doctrine of Chances or A Method of Calculating the Probabilities of Events in Play. The Third Edition, Fuller, Clearer, and more Correct than the Former, London, A. Millar, pp. 1–378 (1756), Digitized by Google, Internet Google Scholar
  17. 17.
    Wieleitner, H.: Geschichte der Mathematik. Part I from Descartes to about 1800. Leipzig 1911-21, 2 vols. (the reference based on the Russian translation: История Математики од Декарта до середины XIX столетия, Наука, Москва 1956) Google Scholar
  18. 18.
    Simon, P., de Laplace, M.: A Philosophical Essay on Probabilities. Transl. Fr. French. Dover (1951) Google Scholar
  19. 19.
    Laudański, L.M.: Statystyka nie tylko dla licencjatów (in Polish: Statistics not only for undergraduates) part1, part2, 2nd edn. Publishing House of the Rzeszow TU, Rzeszów (2009)Google Scholar
  20. 20.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes, p. s.583. McGraw-Hill, Nework (1962)Google Scholar
  21. 21.
    O’Flynn, M.: Probabilities, Random Variables, and Random Processes, p. s.523. Harper & Row, Cambridge (1982)Google Scholar
  22. 22.
    Stigler, S.M.: Isaac Newton as a Probabilist. Statistical Science 21(3), s.400–s.403 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Benjamin, A.T., Quinn, J.J.: Proofs That Really Count. The Art of Combinatorial Proof. Mathematical Association of America, p. s.194 (2003) Google Scholar
  24. 24.
    Rubin, E., Schell, E.D.: Questions and Answers. The American Statistician 14(4), 27–30 (1960)CrossRefGoogle Scholar
  25. 25.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. I, Posthumous Edition, p. 509. John Wiley and Sons, New York (1971)zbMATHGoogle Scholar
  26. 26.
    Fisz, M.: Rachunek Prawdopodobieństwa i Statystyka Matematyczna (in Polish: Probability and Mathematical Statistics). Posthumous 3rd edn., p. s.694. PWN, Warszawa (1967) Google Scholar
  27. 27.
    Good, I.J.: Some Statistical Applications of Poisson’s Work. Statistical Science 1(2), 157–170 (1986)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gumbel, E.J.: Bortkiewicz, Ladislaus von. International Encyclopedia of Statistics 1, 24–27 (1978); reprinted from the International Encyclopedia of Social Sciences (1968)Google Scholar
  29. 29.
    Tennant-Smith, J.: BASIC Statistics. Butterworths, London (1985)Google Scholar
  30. 30.
    Kingman, J.F.C.: Poisson Processes. Oxford UP (1993); translated into Polish. PWN, Warszawa (2002) Google Scholar
  31. 31.
    Zubrzycki, S.: Wykłady z rachunku prawdopodobieństwa i Statystyki Matematycznej (in Polish: Lectures on Probability and Mathematical Statistics), p. 334. PWN, Warszawa (1966) Google Scholar
  32. 32.
    Neyman, J.: Zasady rachunku prawdopodobieństwa i statystyki matematycznej, p. s.258. PWN, Warszawa (1969); English origin, First Course In Probability and Statistics. Henry Holt & Co., New York (1950) Google Scholar
  33. 33.
    Dziennik Samuela Pepysa (The Diary of Samuel Pepys). Translated into Polish and selected Maria Dąbrowska, vol. 1(1660-65), vol.2 (1666-69). PIW, Warsaw (1952) Google Scholar
  34. 34.
    Pearson, K.: On the Criterion that a Given System of Deviations from the Probable in the Case of the Correlated Systems of Variables Is Such That it Can be Reasonably Supposed to Have Arisen from Random Sampling. Philosophical Magazine 50, 157–175 (1900)zbMATHGoogle Scholar
  35. 35.
    Kemp, A.W., Kemp, C.D.: Weldon’s Dice Data Revised. The American Statistician 45(3), 216–222 (1991)MathSciNetGoogle Scholar
  36. 36.
    Haight, F.A.: Handbook of the Poisson Distribution. Wiley, New York (1978)Google Scholar
  37. 37.
    A Guide to the Microfilm Edition of: The Emil J. Gumbel Collection contains 10 pages biography written by Arthur Brenner (Leo Baeck Institute, New York). University Publications of America. No year of publication (approximately 1990), p. 32 Google Scholar
  38. 38.
    Stigler, S.M.: Poisson on the Poisson Distribution. Statistics & Probability Lectures 1, 33–35 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gumbel, E.: Statistics of Extremes. Columbia University Press, New York (1958/1962); Russian translation of В. Ю.Тамарский (W.Yu. Tamarski), Mir, Moscow 1965, p. 450, Lit.: 647 entriesGoogle Scholar
  40. 40.
    Press, H.: The Application of the Statistical Theory of Extreme Values to Gust-load Problems, NACA Report 991, Washington, p. 16 (1949) Google Scholar
  41. 41.
    von Bortkiewicz, L.: Das Gesetz der kleinem Zahlen, p. 60. Teubner, Leipzig (1898) Google Scholar
  42. 42.
    Gosset, W.S.: An Explanation of Deviation from Poisson’s Law in Practice 12(3/4), 211–215; also: Paper in Student’s, Collected Papers, London, Biometrica Office, pp. 65–69 (1942) Google Scholar
  43. 43.
    Gurland, J.: Some Applications of the Negative Binomial and Other Contagious Distributions. Pdf file No.1388, Wikipedia, pp. 1–12; Printed in A.J.P.H. 49(10), 1388–1399 (October 1959) Google Scholar
  44. 44.
    de Montmort, P.: Essay d’analyse sur les jeux de hazard, 2nd edn., p. 468. Jacque Quillau, Paris (1713) (pdf copy accessible by Internet)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Rzeszow Technical UniversityRzeszowPoland

Personalised recommendations