Binomial Distribution

Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 31)

Abstract

We consider the subject of the binomial distribution as the subject opening the theoretical background of Statistics. All the problems in this part of Statistics have some reference to the Theory of Probability which is sometimes bigger and sometimes smaller, but always important.

Keywords

Poisson Distribution Binomial Distribution Negative Binomial Distribution Bernoulli Trial Poisson Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yule, G.U.: An Introduction to the Theory of Statistics. Charles Griffin and Co., London (1911); 2-nd Edition translated into Polish by Z. Limanowski: Wstęp do Teorji Statystyki, Gebethner i Wolff, Warszawa 1921; pp.1–446. Vi-th Edition of 1922 accessible by Internet, pp.1–415. 14-th edition, co-author M.G. Kendall, 1950 translated into Polish as Wstęp do Teorii Statystyki, PWN, Warszawa (1966) Google Scholar
  2. 2.
    Weinberg, G.H., Schumaker, J.A., Oltman, D.: Statistics – An Intuitive Approach, 4th edn., pp. 1–447. Brooks/Cole, Monterey (1981)Google Scholar
  3. 3.
    Spiegel, M.R.: Schaum’s Outline of Theory and Problems of Statistics, pp. 1–359. McGraw-Hill, New York (1972), 870 solved problemsGoogle Scholar
  4. 4.
    Uspensky, J.V.: Introduction to Mathematical Probability, p. s.411. McGraw-Hill, New York (1937)MATHGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. I, Posthumous Edition, p. 509. John Wiley and Sons, New York (1971)MATHGoogle Scholar
  6. 6.
    Laudański, L.M.: Statystyka nie tylko dla licencjatów (in Polish: Statistics not only for undergraduates), part1, part2, 2nd edn. Publishing House of the Rzeszow TU, Rzeszów (2009)Google Scholar
  7. 7.
    Fisz, M.: Rachunek Prawdopodobieństwa i Statystyka Matematyczna (in Polish: Probability and Mathematical Statistics). Posthumous 3rd edn., p. 694. PWN, Warszawa (1967); there is also the English translation although the Author of this book has no references to it Google Scholar
  8. 8.
    Neyman, J.: Zasady rachunku prawdopodobieństwa i statystyki matematycznej, p. s.258. PWN, Warszawa (1969); English origin First Course In Probability and Statistics. Henry Holt & Co., New York (1950) Google Scholar
  9. 9.
    Edwards, A.W.F.: Pascal’s Arithmetical Triangle – The Story of a Mathematical Idea, pierwsze wydanie - w Anglii 1987 – Charles Griffin & Company Ltd., London, a od roku 2002 było drukowane jako Paperback, p. s.202. Johns Hopkins University Press, BaltimoreGoogle Scholar
  10. 10.
    A complete translation of the Ars Conjectandi is available as Jacob Bernoulli: The Art of Conjecturing, together with Letter to a Friend on Sets in Court Tennis, trans. by E.D. Sylla, p. 580 $57.60. Johns Hopkins University Press, Baltimore (2006) Google Scholar
  11. 11.
    Pogorzelski, W.: Zarys Rachunku Prawdopodobieństwa i Teorii Błędów (in Polish: An outline of probability and the error theory). Towarzystwo Bratniej Pomocy Studentów PW (edited by the students organization later resolved by the communist government, Warsaw, pp.1–100 (1948)Google Scholar
  12. 12.
    Parzen, E.: Modern Probability Theory and Its Applications, p. 464. J. Wiley & Sons, New York (1960)MATHGoogle Scholar
  13. 13.
    Hawkins, C.A., Weber, J.E.: Statistical Analysis. Applications to Business and Economics, p. 626. Harper & Row, New York (1980)Google Scholar
  14. 14.
    Al-Saleh, M.F., AL-Batainah, F.K.: Estimation of the Proportion of Sterile Couples Using the Negative Binomial Distribution. Journal of Data Science 1, 261–274 (2003)Google Scholar
  15. 15.
    Gosset, W.S.: An Explanation of Deviation from Poisson’s Law in Practice, vol. 12(3/4), pp. 211–215 (November 1919); also: Paper in Student’s Collected Papers, London, Biometrica Office, pp. 65–69 (1942) Google Scholar
  16. 16.
    Gurland, J.: Some Applications of the Negative Binomial and Other Contagious Distributions. Pdf file No.1388, Wikipedia, pp. 1–12. Printed in A.J.P.H., vol. 49(10), pp. 1388–1399 (October 1959) Google Scholar
  17. 17.
    Fisher, R.A.: The negative Binomial Distribution. Annuals of Eugenics 11, 182–187 (1941)Google Scholar
  18. 18.
    Fisher, R.A.: Note on the Efficiency Fitting of the Negative Binomial. Biometrics 9, 197–199 (1953)MathSciNetGoogle Scholar
  19. 19.
    Dionne, G., Vanasse, C.: A generalization of Automobile Insurance Rating Models: the negative Binomial Distribution with a Regression Component. ASTIN Bulletin 19(2), 199–212 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Rzeszow Technical UniversityRzeszowPoland

Personalised recommendations