Group Recommender Systems: New Perspectives in the Social Web

  • Iván Cantador
  • Pablo Castells
Part of the Intelligent Systems Reference Library book series (ISRL, volume 32)


An increasingly important type of recommender systems comprises those that generate suggestions for groups rather than for individuals. In this chapter, we revise state of the art approaches on group formation, modelling and recommendation, and present challenging problems to be included in the group recommender system research agenda in the context of the Social Web.


Recommender System Collaborative Filter Social Choice Theory Computer Support Cooperative Work Group Recommender 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253 (2011)Google Scholar
  2. 2.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: INTRIGUE: Personalized Recommendation of Tourism Attractions for Desktop and Handset Devices. Applied Artificial Intelligence 17(8-9), 687–714 (2003)CrossRefGoogle Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)Google Scholar
  4. 4.
    Baltrunas, L., Makcinskas, T., Ricci, F.: Group Recommendations with Rank Aggregation and Collaborative Filtering. In: Proceedings of the 4th ACM Conference on Recommender Systems (RecSys 2010), pp. 119–126 (2010)Google Scholar
  5. 5.
    Berkovsky, S., Freyne, J.: Group-based Recipe Recommendations: Analysis of Data Aggregation Strategies. In: Proceedings of the 4th ACM Conference on Recommender Systems (RecSys 2010), pp. 111–118 (2010)Google Scholar
  6. 6.
    Borda, J.C.: Mémoire sur les Élections au Scrutin. Histoire de l’ Académie Royale des Sciences (1781)Google Scholar
  7. 7.
    Cantador, I., Castells, P.: Extracting Multilayered Communities of Interest from Semantic User Profiles: Application to Group Modeling and Hybrid Recommendations. In: Computers in Human Behavior. Elsevier (in Press, 2011)Google Scholar
  8. 8.
    Chao, D.L., Balthrop, J., Forrest, S.: Adaptive Radio: Achieving Consensus using Negative Preferences. In: Proceedings of the 2005 International ACM Conference on Supporting Group Work (GROUP 2005), pp. 120–123 (2005)Google Scholar
  9. 9.
    Copeland, A.H.: A Reasonable Social Welfare Function. In: Seminar on Applications of Mathematics to the Social Sciences, University of Michigan (1951)Google Scholar
  10. 10.
    De Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Managing Uncertainty in Group Recommending Processes. User Modeling and User-Adapted Interaction 19(3), 207–242 (2009)CrossRefGoogle Scholar
  11. 11.
    Gartrell, M., Xing, X., Lv, Q., Beach, A., Han, R., Mishra, S., Seada, K.: Enhancing Group Recommendation by Incorporating Social Relationship Interactions. In: Proceedings of the 16th ACM International Conference on Supporting Group Work (GROUP 2010), pp. 97–106 (2010)Google Scholar
  12. 12.
    Geyer, W., Freyne, J., Mobasher, B., Anand, S.S., Dugan, C.: 2nd Workshop on Recommender Systems and the Social Web. In: Proceedings of the 4th ACM Conference on Recommender Systems (RecSys 2010), pp. 379–380 (2010)Google Scholar
  13. 13.
    Herlocker, J., Konstan, J.A., Borchers, A., Riedl, J.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proceedings of the 22nd ACM Conference on Research and Development in Information Retrieval (SIGIR 1999), pp. 230–237 (1999)Google Scholar
  14. 14.
    Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and Evaluating Choices in a Virtual Community of Use. In: Proceedings of the 13th International Conference on Human Factors in Computing Systems (CHI 1995), pp. 194–201 (1995)Google Scholar
  15. 15.
    Jameson, A.: More than the Sum of its Members: Challenges for Group Recommender Systems. In: Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI 2004), pp. 48–54 (2004)Google Scholar
  16. 16.
    Jameson, A., Smyth, B.: Recommendation to Groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Masthoff, J.: Group Modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers. User Modeling and User-Adapted Interaction 14(1), 37–85 (2004)CrossRefGoogle Scholar
  18. 18.
    Masthoff, J.: The Pursuit of Satisfaction: Affective State in Group Recommender Systems. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 297–306. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Masthoff, J.: Group Recommender Systems: Combining Individual Models. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 677–702 (2011)Google Scholar
  20. 20.
    McCarthy, J.F.: Pocket RestaurantFinder: A Situated Recommender System for Groups. In: Proceedings of the ACM CHI 2002 International Workshop on Mobile Ad-Hoc Communication (2002)Google Scholar
  21. 21.
    McCarthy, J.F., Anagnost, T.D.: MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative Workouts. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work (CSCW 1998), pp. 363–372 (1998)Google Scholar
  22. 22.
    McCarthy, K., Salamo, M., McGinty, L., Smyth, B.: CATS: A Synchronous Approach to Collaborative Group Recommendation. In: Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2006), pp. 1–16 (2006)Google Scholar
  23. 23.
    O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: PolyLens: A Recommender System for Groups of Users. In: Proceedings of the 7th European Conference on Computer Supported Cooperative Work (ECSCW 2001), pp. 199–218 (2001)Google Scholar
  24. 24.
    Pattanaik, P.K.: Voting and Collective Choice. Cambridge University Press (2001)Google Scholar
  25. 25.
    Pizzutilo, S., De Carolis, B., Cozzolongo, G., Ambruoso, F.: Group Modeling in a Public Space: Methods, Techniques, Experiences. In: Proceedings of the 5th WSEAS International Conference on Applied Informatics and Communications (AIC 2005), pp. 175–180 (2005)Google Scholar
  26. 26.
    Shani, G., Gunawardana, A.: Evaluating Recommendation Systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297 (2011)Google Scholar
  27. 27.
    Senot, C., Kostadinov, D., Bouzid, M., Picault, J., Aghasaryan, A., Bernier, C.: Analysis of Strategies for Building Group Profiles. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 40–51. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Smith, R.B., Hixon, R., Horan, B.: Supporting Flexible Roles in a Shared Space. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work (CSCW 1998), pp. 197–206 (1998)Google Scholar
  29. 29.
    Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting Query Repetition and Regularity in an Adaptive Community-Based Web Search Engine. User Modeling and User-Adapted Interaction 14(5), 383–423 (2005)CrossRefGoogle Scholar
  30. 30.
    Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.R.: Semantic Modelling of User Interests Based on Cross-Folksonomy Analysis. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 632–648. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Szomszor, M., Cantador, I., Alani, H.: Correlating User Profiles from Multiple Folksonomies. In: Proceedings of the 19th ACM Conference on Hypertext and Hypermedia (Hypertext 2008), pp. 33–42 (2008)Google Scholar
  32. 32.
    Szomszor, M., Cattuto, C., Van den Broeck, W., Barrat, A., Alani, H.: Semantics, Sensors, and the Social Web: The Live Social Semantics Experiments. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 196–210. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Taylor, A.D.: Mathematics and Politics: Strategy, Voting, Power and Proof (1995)Google Scholar
  34. 34.
    Tintarev, N., Masthoff, J.: Designing and Evaluating Explanations for Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 479–510 (2011)Google Scholar
  35. 35.
    Winoto, P., Ya Tang, T.: If You Like the Devil Wears Prada the Book, Will You also Enjoy the Devil Wears Prada the Movie? A Study of Cross-Domain Recommendations. New Generation Computing 26(3), 209–225 (2008)CrossRefGoogle Scholar
  36. 36.
    Yu, Z., Zhou, X., Hao, Y., Gu, J.: TV Program Recommendation for Multiple Viewers Based on user Profile Merging. User Modeling and User-Adapted Interaction 16(1), 63–82 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Universidad Autónoma de MadridMadridSpain

Personalised recommendations