Experimental Exploration of an Underexpanded Supersonic Jet

  • B. André
  • T. Castelain
  • C. Bailly
Conference paper


Underexpanded jets have been the subject of many studies for a long time. The most often encountered ones issue from a convergent nozzle. Indeed, it is enough that the nozzle pressure ratio (henceforth NPR), defined as the ratio of upstream stagnation pressure to the ambient pressure, be above a critical value, and the jet is underexpanded, the static pressure at the nozzle exit being higher than the ambient.


Mach Number Mach Disc Nozzle Pressure Ratio Shock Cell Pitot Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Powell, A.: On Prandtl’s formulas for supersonic jet cell length. International Journal of Aeroacoustics 1 & 2(9), 207–236 (2010)CrossRefGoogle Scholar
  2. 2.
    Adamson, T.C., Nicholls, J.A.: On the structure of jets from highly underexpanded nozzles into still air. Report ERI Project 2397, The University of Michigan (1958)Google Scholar
  3. 3.
    Love, E.S., Grigsby, C.E., Lee, L.P., Woodling, M.J.: Experimental and theoretical studies of axisymmetric free jets. NACA Technical Report R-6 (1959)Google Scholar
  4. 4.
    Donaldson, C.D., Snedeker, R.S.: A Study of Free Jet Impingement. Part 1. Mean Properties of Free and Impinging Jets. Journal of Fluid Mechanics 45(Part 2), 281–319 (1971)CrossRefGoogle Scholar
  5. 5.
    Hu, T.F., McLaughlin, D.K.: Flow and acoustic properties of low Reynolds number underexpanded supersonic jets. Journal of Sound and Vibration 141(3), 485–505 (1990)CrossRefGoogle Scholar
  6. 6.
    Norum, T.D., Seiner, J.M.: Measurements of mean static pressure and far field acoustics of shock containing supersonic jets. NASA Technical Memorandum 84521 (1982)Google Scholar
  7. 7.
    Seiner, J.M., Dash, S.M., Wolf, D.E.: Analysis of turbulent underexpanded jets, Part II: shock noise features using SCIPVIS. AIAA Journal 23(5), 669–677 (1985)CrossRefGoogle Scholar
  8. 8.
    Katanoda, H., Miyazato, Y., Masuda, M., Matsuo, K.: Pitot pressures of correctly-expanded and underexpanded free jets from axisymmetric supersonic nozzles. Shock Waves 10(2), 95–101 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Eggins, P.L., Jackson, D.A.: Laser-Doppler velocity measurements in an under-expanded free jet. Journal of Physics D - Applied Physics 7(14), 1894–1907 (1974)CrossRefGoogle Scholar
  10. 10.
    Nouri, J.M., Whitelaw, J.H.: Flow characteristics of an underexpanded jet and its application to the study of droplet breakup. Experiments in Fluids 21(4), 243–247 (1996)CrossRefGoogle Scholar
  11. 11.
    Anderson, J.D.: Modern compressible flow with historical perspective, 2nd edn. McGraw-Hill (1990)Google Scholar
  12. 12.
    Pinckney, S.Z.: A short static-pressure probe design for supersonic flow. NASA Technical Note D - 7978 (1975)Google Scholar
  13. 13.
    Morrison, G.L., McLaughlin, D.K.: Instability process in low Reynolds number supersonic jets. AIAA Journal 18(7), 793–800 (1980)CrossRefGoogle Scholar
  14. 14.
    Staff, A.: Equations, tables and charts for compressible flow. NACA Report 1135 (1953)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. André
    • 1
  • T. Castelain
    • 1
  • C. Bailly
    • 1
    • 2
  1. 1.Laboratoire de Mécanique des Fluides et d’AcoustiqueFrance
  2. 2.Institut Universitaire de FranceFrance

Personalised recommendations