Visualizing the Supersonic Flow around a Microvortex Generator

  • F. K. Lu
  • A. P. Pierce
  • P. J. Gonzalez
  • Y. Shih


Microvortex generators (MVGs) have been proposed as devices for alleviating the adverse effects of shock/boundary-layer interactions [1]. MVGs in supersonic flow are generally skewed tetrahedral protuberanceswhose height is less than the boundary layer thickness (Fig. 1). Anderson et al. [1] providedMVG design guidelines, such as the standoff distance from an MVG array to the shock impingement location.


Particle Image Velocimetry Supersonic Flow AIAA Paper Standoff Distance Horseshoe Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, B.H., Tinapple, J., Sorber, L.: Optimal Control of Shock Wave Turbulent Boundary Layer Interactions using Micro-Array Actuation. AIAA Paper 2006–3197 (2006)Google Scholar
  2. 2.
    Li, Q., Liu, C.: Declining Angle Effects of the Trailing Edge of a Microramp Vortex Generator. J Aircraft 47(6), 2086–2095 (2010)CrossRefGoogle Scholar
  3. 3.
    Blinde, P.L., Humble, R.A., van Oudheusden, B.W., Scarano, F.: Effect of Micro-Ramps on a Shock Wave/Turbulent Boundary Layer Interaction. Shock Waves 19(6), 507–520 (2009)CrossRefGoogle Scholar
  4. 4.
    Pierce, A.J.: Experimental Study of Micro-Vortex Generators at Mach 2.5. MSAE thesis. Univ. Texas Arlington (2010)Google Scholar
  5. 5.
    Lu, F.K., Pierce, A.J., Shih, Y., Liu, C., Li, Q.: Experimental and Numerical Study of Flow Topology Past Micro Vortex Generators. AIAA Paper 2010–4463 (2010a)Google Scholar
  6. 6.
    Lu, F.K., Pierce, A.J., Shih, Y.: Experimental Study of Near Wake of Micro Vortex Generators in Supersonic Flow. AIAA Paper 2010–4623 (2010b)Google Scholar
  7. 7.
    Pierce, A.J., Lu, F.K., Bryant, D.S., Shih, Y.: New Developments in Surface Oil Flow Visualization. AIAA Paper 2010–4353 (2010)Google Scholar
  8. 8.
    Pierce, A.J., Lu, F.K.: New Seeding and Surface Treatment Methods for Particle Image Velocimetry. AIAA Paper 2011–1164 (2011)Google Scholar
  9. 9.
    Elfstrom, G.M.: Turbulent Hypersonic Flow at a Wedge-Compression Corner. J. Fluid Mech. 53(1), 113–127 (1972)CrossRefGoogle Scholar
  10. 10.
    Babinsky, H., Li, Y., Pitt Ford, C.: Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA J. 47(3), 668–675 (2009)CrossRefGoogle Scholar
  11. 11.
    Herges, T., Kroeker, E., Elliott, G., Dutton, C.: Microramp Flow Control of Normal Shock/Boundary-Layer Interactions. AIAA J. 48(11), 2529–2542 (2010)CrossRefGoogle Scholar
  12. 12.
    Tobak, M., Peake, D.J.: Topology of Three-Dimensional Separated Flows. Ann. Rev. Fluid Mech. 14, 61–85 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Crawford, J.D., Knobloch, E.: Symmetry and Symmetry-Breaking Bifurcations in Fluid Dynamics. Ann. Rev. Fluid. Mech. 23, 341–387 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • F. K. Lu
    • 1
  • A. P. Pierce
    • 1
  • P. J. Gonzalez
    • 1
  • Y. Shih
    • 1
  1. 1.Aerodynamics Research Center, Mechanical and Aerospace Engineering DepartmentUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations