Advertisement

Experimental and Numerical Investigation of CH* and OH* Chemiluminescence in Acetylene Combustion behind Reflected Shock Waves

  • M. Bozkurt
  • M. Fikri
  • C. Schulz
Conference paper

Introduction

Spontaneous light radiation from chemical excited species is responsible for the well-known emission of flames. Blue light emission due to the CH(A2Δ-X2Π) and UV emission from the OH(A2Δ-X2Π) transitions are specific features in hydrocarbon combustion and are most frequently employed in various applications. The simplicity of the detection of the spontaneous emission compared to laser-based diagnostics make chemiluminescence spectroscopy very attractive for the investigation of flames and potentially for combustion control. This, however, requires a fundamental understanding of the coupling of light intensities and spectral features to the underlying chemical processes in a practical combustion situation.

Keywords

Shock Wave Shock Tube Ignition Delay Ignition Delay Time Lean Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, J.M., Petersen, E.L.: Int. J. Chem. Kinet. 38, 714–724 (2006)CrossRefGoogle Scholar
  2. 2.
    Carl, S.A., Van Poppel, M., Peeters, J.: J. Phys. Chem. A 107, 11001–11007 (2003)CrossRefGoogle Scholar
  3. 3.
    Smith, G.P., Luque, J., Park, C., Jeffries, J.B., Crosley, D.R.: Combust. Flame 131, 59–69 (2002)CrossRefGoogle Scholar
  4. 4.
    Porter, R.P., Clark, A.H., Kaskan, W.E., Browne, W.E.: Proc. Combust. Inst. 11, 907–917 (1967)Google Scholar
  5. 5.
    Krishnamachari, S.L.N.G., Broida, H.P.: J. Chem. Phys. 34, 1709–1711 (1960)CrossRefGoogle Scholar
  6. 6.
    Kathrotia, T., Fikri, M., Bozkurt, M., Hartmann, M., Riedel, U., Schulz, C.: Combust. Flame 157, 1261–1273 (2010)CrossRefGoogle Scholar
  7. 7.
    Broida, H.P., Gaydon, A.G.: Proc. R. Soc. London, Ser. A 218, 60–69 (1953)CrossRefGoogle Scholar
  8. 8.
    Bass, A.M., Broida, H.P.: NBS Monogr (U.S.) 24, 20 (1961)Google Scholar
  9. 9.
    Gaydon, A.G.: The Spectroscopy of Flames (1957)Google Scholar
  10. 10.
    Glass, G.P., Kistiakowsky, G.B., Michael, J.V., Niki, H.: J. Chem. Phys. 42, 608–621 (1965)CrossRefGoogle Scholar
  11. 11.
    Brennen, W., Carrington, T.: J. Chem. Phys. 46, 7–18 (2005)CrossRefGoogle Scholar
  12. 12.
    Grebe, J., Homann, K.H.: Ber. Bunsenges. Phys. Chem. 86(1982), 587–597 (2005)Google Scholar
  13. 13.
    Hand, C.W., Kistiakowsky, G.B.: J. Chem. Phys. 37, 1239–1245 (1962)CrossRefGoogle Scholar
  14. 14.
    Gutman, D., Matsuda, S.: J. Chem. Phys. 52, 4122–4132 (1970)CrossRefGoogle Scholar
  15. 15.
    Matsuda, S., Slagle, I.R., Fife, D.J., Marquart, J.R., Gutman, D.: J. Chem. Phys. 57, 5277–5285 (1972)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Laskin, A.: in: A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures. Department of Mechanical Engineering, University of DelawareGoogle Scholar
  17. 17.
    Williams, B.A., Pasternack, L.: Combust. Flame 111, 87–110 (1997)CrossRefGoogle Scholar
  18. 18.
    Tamura, M., Berg, P.A., Harrington, J.E., Luque, J., Jeffries, J.B., Smith, G.P., Crosley, D.R.: Combust. Flame 114, 502–514 (1998)CrossRefGoogle Scholar
  19. 19.
    Hall, J.M., de Vries, J., Amadio, A.R., Petersen, E.L.: AIAA 43, Paper No. 1318 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Bozkurt
    • 1
  • M. Fikri
    • 1
  • C. Schulz
    • 1
  1. 1.IVGUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations