Numerical Study of Detonation Wave Propagation in Narrow Channels

  • Ashwin Chinnayya
  • Abdellah Hadjadj
Conference paper


Progress toward the miniaturization of increasingly advanced micro- and nanoelectromechanical systems has highlighted the need for a better knowledge of the design of such devices. In the field of energy and power, as the systems are scaled down the thermal efficiency of conventional propellant devices is seriously degraded due to significant heat losses which can cause the combustion extinction. A promising technique is to use shock or detonation waves in gaseous media to enhance the chemical reaction rates [1]. In addition to the classical safety issues, possible applications [2] of micro-detonations refer to energy production, propulsion or actuation [3], [4], or to the predetonator of a pulsed detonation engine. For energetic materials, microscale applications may include detonation interaction with microstructure [5].


Master Equation Detonation Wave Detonation Velocity Detonation Front Sonic Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brouillette, M.: Shock Waves 13(1), 3–12 (2003)CrossRefGoogle Scholar
  2. 2.
    Wu, M.-H., Burke, M.P., Son, S.F., Yetter, R.A.: Proceedings of the Combustion Institute 31(2), 2429–2436 (2007)CrossRefGoogle Scholar
  3. 3.
    Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Progress in Energy and Combustion Science 30(6), 545–672 (2004)CrossRefGoogle Scholar
  4. 4.
    Fernandez-Pello, A.C.: Proceedings of the Combustion Institute 29(1), 883–899 (2002)CrossRefGoogle Scholar
  5. 5.
    Stewart, D.S.: Shock Waves 11(6), 467–473 (2002)CrossRefGoogle Scholar
  6. 6.
    Fickett, W., Davis, W.C.: Detonation, Theory and Experiment. Dover Publications, New York (1979)Google Scholar
  7. 7.
    Lee, J.H.S.: The detonation phenomenon. Cambridge University Press (2008)Google Scholar
  8. 8.
    Camargo, A., Ng, H.G., Chao, J., Lee, J.H.S.: Shock Waves 20(6), 499–508 (2010)CrossRefGoogle Scholar
  9. 9.
    Zel’dovich, Y.B.: Zhur. Eksptl. Teoret. Fiz. 10, 542; translated in NACA Tech. Mem. 1261 (1940)Google Scholar
  10. 10.
    Zhang, F., Lee, J.H.S.: Proceedings of the Royal Society London A 446, 87–105 (1994)zbMATHCrossRefGoogle Scholar
  11. 11.
    Manson, N.: Proceedings of the 6th Symposium (International) on Combustion, pp. 631–639. Reinhold Publishing, New York (1957)Google Scholar
  12. 12.
    Fay, J.A.: Physics of Fluids 2(3), 283–289 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Austin, J.M., Pintgen, F., Shepherd, J.E.: Proceedings of the Combustion Institute 30(2), 1849–1857 (2005)CrossRefGoogle Scholar
  14. 14.
    Clavin, P.: Chaos 14(3), 825–838 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Erpenbeck, J.J.: Physics of Fluids 7, 684–696 (1964)zbMATHCrossRefGoogle Scholar
  16. 16.
    Shepherd, J.E.: Proceedings of the Combustion Institute 32(1), 83–98 (2009)CrossRefGoogle Scholar
  17. 17.
    Chaudhuri, A., Hadjadj, A., Chinnayya, A., Palerm, S.: Journal of Scientific Computing (2011), doi: 10.1007/s10915-010-9429-3Google Scholar
  18. 18.
    Ngomo, D., Chinnayya, A., Hadjadj, A.: V European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Lisbon, Portugal, June 14-17 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ashwin Chinnayya
    • 1
  • Abdellah Hadjadj
    • 1
  1. 1.CORIA UMR CNRS 6614Saint-Etienne du RouvrayFrance

Personalised recommendations