Effects of Vortical and Entropic Forcing on Detonation Dynamics

  • L. Massa
  • M. Chauhan
  • F. K. Lu
Conference paper


Experiments [3] have shown that detonations in non-ideal conditions, i.e., subject to strong boundary turbulence, support an irregular induction region characterized by hot spots and incomplete combustion. The present research examines the interaction of detonation with turbulence with emphasis on structural changes in the induction region. Both entropic and vortical turbulent fluctuations are considered, and related to each other by a strong Reynolds analogy.


Mach Number WENO Scheme Convect Turbulence Dynamic Mode Decomposition Entropic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubry, N., Guyonnet, R., Lima, R.: Spatiotemporal analysis of complex signals: theory and applications. Journal of Statistical Physics 64(3), 683–739 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A.: Explosion hazards and evaluation. Elsevier Scientific Publishing Co., Amsterdam (1983)Google Scholar
  3. 3.
    Gelfand, B.E., Frolov, S.M., Nettleton, M.A.: Gaseous detonations–A selective review. Progress in Energy and Combustion Science 17(4), 327–371 (1991)CrossRefGoogle Scholar
  4. 4.
    Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins Univ. Pr (1996)Google Scholar
  5. 5.
    Kessler, D.A., Gamezo, V.N., Oran, E.S.: Simulations of flame acceleration and deflagrationto- detonation transitions in methane-air systems. Combustion and Flame 157(11), 2063–2077 (2010)CrossRefGoogle Scholar
  6. 6.
    Massa, L., Chauhan, M., Lu, F.K.: Detonation-turbulence interaction. Combustion and Flame (in press, 2011), doi: 10.1016/j.combustflame.2011.01.014Google Scholar
  7. 7.
    Morkovin, M.V.: Effects of compressibility on turbulent flows. Mécanique de la Turbulence, pp. 367–380 (1962)Google Scholar
  8. 8.
    Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics 656, 5–28 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. Massa
    • 1
  • M. Chauhan
    • 1
  • F. K. Lu
    • 1
  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations