Advertisement

Flow Phenomena in Microscale Shock Tubes

  • M. Brouillette
  • G. Giordano
  • G. Mirshekari
  • C. Hébert
  • J. -D. Parisse
  • P. Perrier
Conference paper

Introduction

Recent experiments on small shock tubes, at normal or reduced pressure, have revealed interesting phenomena. For example, Brouillette [1], using pressure instrumentation, has examined the operation of a 5.3 mm shock tube at initial pressures down to 1 mBar for diaphragm pressure ratios up to 105 and found a decrease in shock strength with decreasing scaling parameter ReD/L for a given diaphragm pressure ratio. Garen et al. [2], with an atmospheric 1 mm shock tube that used a quick opening valve instead of diaphragm, reached the same conclusions using laser differential interferometry observations.

Keywords

Shock Wave Shock Tube Incident Shock Shock Strength Drive Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brouillette, M.: Shock waves at microscales. Shock Waves 13, 3–12 (2003)CrossRefGoogle Scholar
  2. 2.
    Garen, W., Meyerer, B., Udagawa, S., Maeno, K.: Shock waves in mini-tubes: influence of the scaling parameter S. In: Hanneman, K., Seiler, F. (eds.) Proceedings of 26th International Symposium on Shock Waves, pp. 1473–1478. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Mirshekari, G., Brouillette, M.: One-dimensional model for microscale shock tube flow. Shock Waves 19, 25–38 (2009)CrossRefGoogle Scholar
  4. 4.
    Parisse, J.D., Giordano, J., Perrier, P., Burtschell, Y., Graur, I.A.: Numerical investigation of micro shock waves generation. Microfluid Nanofluid 6, 699–700 (2009)CrossRefGoogle Scholar
  5. 5.
    Mirshekari, G., Brouillette, M.: Shock waves at microscale. In: 27th International Symposium on Shock Waves, St. Petersburg (July 2009)Google Scholar
  6. 6.
    Laporte, O.: On the interaction of shock with a constriction, Los Alamos Scientific Laboratory Technical Report No. LA-1740 (1954)Google Scholar
  7. 7.
    Quirk, J.J.: Amrita – A computational facility (for CFD modeling). In: VKI 29th CFD Lecture Series (1998)Google Scholar
  8. 8.
    Burtschell, Y., Cardoso, M., Zeitoun, D.E.: Numerical analysis of the reducing driver gas contamination in impulse shock tunnels. AIAA J. 39(12), 2357–2365 (2001)CrossRefGoogle Scholar
  9. 9.
    Mirels, H.: Correlation Formulas for Laminar Shock Tube Boundary Layer. Phys. Fluids 9, 1265–1272 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Brouillette
    • 1
  • G. Giordano
    • 2
  • G. Mirshekari
    • 1
  • C. Hébert
    • 1
  • J. -D. Parisse
    • 2
  • P. Perrier
    • 2
  1. 1.Université de SherbrookeSherbrookeCanada
  2. 2.Université de Provence, École Polytechnique Universitaire de Marseille, UMR CNRS 6595MarseilleFrance

Personalised recommendations