Influence of Electronic Excitation on Transport Properties of Partially Ionized Atomic Gases

  • V. A. Istomin
  • E. V. Kustova
Conference paper


The contribution of internal degrees of freedom to the transport coefficients was studied in many papers on the kinetic theory for both weak and strong deviation from thermal equilibrium [1, 2, 3, 4]. While the effect of rotational and vibrational degrees of freedom on transport properties was widely discussed in the literature, the influence of electronic excitation is generally neglected in the transport theory. Usually atomic species are considered like particles without internal structure. It is the reason why in the expressions for the heat flux and mean normal stress the internal heat conductivity and bulk viscosity coefficients do not appear. However, neglecting this coefficients can result in the incorrect prediction of flow parameters.


Thermal Conductivity Electronic Excitation Bulk Viscosity Macroscopic Parameter Total Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mason, E., Monchick, L.: J. Chem. Phys. 36, 2746 (1962)Google Scholar
  2. 2.
    Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms. Lect. Notes Phys., Series monographs, M24. Springer (1994)Google Scholar
  3. 3.
    Brun, R.: Transport phenomena in relaxing gas mixtures: models and applications. In: Beylich, A. (ed.) Rarefied Gas Dynamics, vol. 17. VCH, Weinheim (1991)Google Scholar
  4. 4.
    Nagnibeda, E.A., Kustova, E.V.: Non-equilibrium reacting gas flows – Kinetic theory of transport and relaxation processes. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bruno, D., Laricchiuta, A., Capitelli, M., Catalfamo, C.: Phys. Plasmas 14, 022303 (2007)CrossRefGoogle Scholar
  6. 6.
    Bruno, D., Capitelli, M., Catalfamo, C., Laricchiuta, A.: Phys. Plasmas 14, 072308 (2007)CrossRefGoogle Scholar
  7. 7.
    Kustova, E.V., Puzyreva, L.A.: Physical Review E 80, 046407 (2009)CrossRefGoogle Scholar
  8. 8.
    Istomin, V.A., Kustova, E.V., Puzyreva, L.A.: Transport Properties of Electronically Excited N 2/N and O 2/O Mixtures. In: AIP Conference Proceedings on Rarefied Gas Dynamics, vol. 1333, pp. 747–752 (2011)Google Scholar
  9. 9.
    Capitelli, M., Colonna, G., Giordano, D., Marraffa, L., Casavola, A., Minelli, P., Pagano, D., Pietanza, L., Taccogna, F.: ESA STR–246. ESA Publications Division, ESTEC, Noordwijk, The Netherlands (2005)Google Scholar
  10. 10.
    Bruno, D., Capitelli, M., Catalfamo, C., Celiberto, R., Colonna, G., Diomede, P., Giordano, D., Gorse, C., Laricchiuta, A., Longo, S., Pagano, D., Pirani, F.: Transport Properties of High-Temperature Mars-Atmosphere Components. ESA, STR–256 (2008)Google Scholar
  11. 11.
    Cenian, A., Chernukho, A., Borodin, V.: Contrib. Plasma Phys. 35, 273–296 (1995)CrossRefGoogle Scholar
  12. 12.
    Capitelli, M., Ferreira, C., Gordiets, B., Osipov, A.: Plasma kinetics in atmospheric gases. Springer, Berlin (2000)Google Scholar
  13. 13.
    Ferziger, J., Kaper, G.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. A. Istomin
    • 1
  • E. V. Kustova
    • 1
  1. 1.Department of Mathematics and MechanicsSaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations