High Energy Concentration by Symmetric Shock Focusing

  • N. Apazidis
  • M. Kjellander
  • N. Tillmark
Conference paper


The purpose of the present research is to study, obtain understanding and actively control the major features of the complex, highly nonlinear phenomenon of shock convergence and focusing in gas. The nature of our research is experimental, numerical and theoretical. The core is the experimental facility consisting of a specially constructed shock tube with various test sections. We have up to this moment used a specially constructed annular configuration delivering 2D cylindrical shocks converging towards the center of the transparent thin cylindrical test section.


Shock Wave Shock Front Focal Region Strong Shock High Energy Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301–319 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Apazidis, N., Lesser, M.B., Tillmark, N., Johansson, B.: An experimental and theoretical study of converging polygonal shock waves. Shock Waves 12, 39–58 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Apazidis, N.: Focusing of strong shocks in an elliptic cavity. Shock Waves 13, 91–101 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)CrossRefGoogle Scholar
  5. 5.
    Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2006)CrossRefGoogle Scholar
  6. 6.
    Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)CrossRefGoogle Scholar
  7. 7.
    Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock wave focusing in air and argon. Phys. Fluids 19, 106106 (2007)CrossRefGoogle Scholar
  8. 8.
    Flanningan, D.J., Suslick, K.S.: Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 52–55 (2005)CrossRefGoogle Scholar
  9. 9.
    Guderley, G.: PStarke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19, 302–313 (1942)MathSciNetGoogle Scholar
  10. 10.
    Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 46102 (2010)CrossRefGoogle Scholar
  11. 11.
    Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and sherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)CrossRefGoogle Scholar
  12. 12.
    Perry, R.W., Kantrowitz, A.: The production of converging shock waves. J. Appl. Phys. 22, 878–886 (1951)CrossRefGoogle Scholar
  13. 13.
    Schwendeman, D.W., Whitham, G.B.: On converging shock waves. Proc. R. Soc. Lond. A 413, 297–311 (1987)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. Apazidis
    • 1
  • M. Kjellander
    • 1
  • N. Tillmark
    • 1
  1. 1.Department of MechanicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations