Skip to main content

Multiscale Modeling and Simulation of Shock-Wave Impact Failure in Hard and Soft Matter

  • Conference paper
Book cover 28th International Symposium on Shock Waves

Introduction

Understanding the mechanisms of failure in materials on various length- and time scales is a prerequisite for the design of new materials with desired superior properties such as high toughness or strength. On the macroscopic scale, many materials such as concrete or ceramics may be viewed as being homogeneous; however, on the scale of a few microns these materials often exhibit an inhomogeneous polyhedral granular structure which is known to influence its macroscopic mechanical and optical properties, see e.g. Steinhauser [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinhauser, M.O.: Computational Multiscale Modeling of Fluids and Solids - Theory and Applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  2. Kadau, K., Germann, T.C., Lomdahl, P.S.: Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L. Int. J. Mod. Phys. C 17(12), 1755–1761 (2006)

    Article  Google Scholar 

  3. Buehler, M.J., Gao, H.: Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307–310 (2006)

    Article  Google Scholar 

  4. Zhou, S.J., Beazley, D.M., Lomdahl, P.S., Holian, B.L.: Large-scale molecular dynamics simulations of three-dimensional ductile failure. Phys. Rev. Lett. 78(3), 479–482 (1997)

    Article  Google Scholar 

  5. Steinhauser, M.O., Hiermaier, S.: A review of computational methods in materials science: Examples from shock-wave and polymer physics. Int. J. Mol. Sci. 10(12), 5135–5216 (2009)

    Article  Google Scholar 

  6. Steinhauser, M.O., Kühn, M.: Modeling and simulation of microstructures using power diagrams: Proof of the concept. Appl. Phys. Lett. 93(1), 034102 (2008)

    Google Scholar 

  7. Ganzenmüller, G.C., Hiermaier, S., Steinhauser, M.O.: Shock-wave induced damage in lipid bilayers: A dissipative particle dynamics simulation study. Soft Matter, cosm01296C (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steinhauser, M.O., Ganzenmüller, G.C., Hiermaier, S. (2012). Multiscale Modeling and Simulation of Shock-Wave Impact Failure in Hard and Soft Matter. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25688-2_121

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25688-2_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25687-5

  • Online ISBN: 978-3-642-25688-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics