Advertisement

Surface Chemical Reaction of Laser Ablated Aluminum Sample for Detonation Initiation

  • Chang-hwan Kim
  • Jack J. Yoh
Conference paper

Introduction

Laser ablation is the principle mechanism upon which many laser processing techniques rely, including materials processing, laser propulsion, and chemical analysis of materials of interest. An important factor on this account is the ambient condition since the ablation process in air may encounter strong laser supported waves [1].

Keywords

Shock Wave Detonation Wave Detonation Velocity Detonation Initiation Shadowgraph Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Root, R.G.: Modeling of post-breakdown phenomena. Laser-induced Plasmas and Applications, 69–103 (1989)Google Scholar
  2. 2.
    Ramsden, S.A., Savic, P.: A radiative detonation model for the development of a laser-induced spark in air. Nature 203(4951), 1217–1219 (1964)CrossRefGoogle Scholar
  3. 3.
    Raizer, Y.P.: Heating of a gas by a powerful light pulse. Soviet Physics JETP 21, 1009 (1965)Google Scholar
  4. 4.
    Ushio, M., Komurasaki, K., Kawamura, K., Arakawa, Y.: Effect of laser supported detonation wave confinement on termination conditions. Shock Waves 18(1), 35 (2008)CrossRefGoogle Scholar
  5. 5.
    Zhang, F., Gerrard, K., Ripley, R.C.: Reaction mechanism of aluminum-particle-air detonation. Journal of Propulsion and Power 25(4), 845–858 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Tulis, A.J., Selman, J.R.: Detonation tube studies of aluminum particles dispersed in air. In: Proceedings of the 19th International Symposium on Combustion, Combustion Inst., pp. 655–663 (1982)Google Scholar
  7. 7.
    Zhang, F., Murray, S.B., Gerrard, K.: Aluminum Particles-air Detonation at Elevated Pressures. Shock Waves 15, 313 (2006)CrossRefGoogle Scholar
  8. 8.
    Grevel, J.F.Y., Boudreau, D.: Study by focused shadowgraphy of the effect of laser irradiance on laser-induced plasma formation and ablation rate in various gases. Spectrochimica Acta. Part B 64, 56 (2009)CrossRefGoogle Scholar
  9. 9.
    Wen, S.B., Mao, X., Greif, R., Russo, R.E.: Expansion of the laser ablation vapor plume into a background gas. J. Appl. Phys. 101, 023115 (2007)CrossRefGoogle Scholar
  10. 10.
    Zeldovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Dover, New York (2002)Google Scholar
  11. 11.
    Thorne, A., Litzen, U., Johanson, S.: Spectrophysics: Principles and Applications, 2nd edn. Springer, Berlin (1999)Google Scholar
  12. 12.
    Gojani, A.B., Yoh, J.J.: New ablation experiment aimed at metal expulsion at the hydrodynamic regime. Applied Surface Science 255, 9268 (2009)CrossRefGoogle Scholar
  13. 13.
    Kleine, H., Deway, J.M., Ohashi, K., Mizukaki, T., Takayama, K.: Studies of the TNT equivalence of silver azide charges. Shock waves 13(2), 123–138 (2003)CrossRefGoogle Scholar
  14. 14.
    Borisov, A.A., Khasainov, B.A., Saneev, E.L., Formin, I.B., Khomik, S.V., Veyssiere, B.: Dynamic structure of detonation in gaseous and dispersed media, pp. 215–253. Kluwer, Dordrecht (1991)Google Scholar
  15. 15.
    Ogle, R.A., Beddow, J.K., Chen, L.D., Butler, P.: An investigation of aluminum dust explosions. Combustion Science and Technology 61, 75–99 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chang-hwan Kim
    • 1
  • Jack J. Yoh
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations