Advertisement

Shock-Wave Induced Ignition of Normal Undecane (n-C11H24) and Comparison to Other High-Molecular-Weight n-Alkanes

  • Brandon Rotavera
  • Eric L. Petersen

Introduction

Modeling of chemical kinetics during the ignition of normal alkanes is of importance in the detailing of combustion behavior of transportation fuels used in automotive and propulsion engines due to the large volumetric proportion of these species as constituents in the fuels which drive such devices. Further, owing to the presence of n-alkanes in practical fuels, proper formulation of a multi-component fuel surrogate must make use of and account for this hydrocarbon class to adequately describe relevant combustion phenomena including, among others, engine knock, ignition delay times, and product species. Shock-tube oxidation and ignition measurements involving higher-order alkanes have more recently become available which has, as a result, led to the improvement and development of chemical kinetics mechanisms toward describing associated processes which affect oxidation chemistry: reaction pathways, intermediate species production, and rates of reaction.

Keywords

Shock Tube Ignition Delay Time Propulsion Engine Ignition Behavior Hydrocarbon Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson, D.F., Ranganath, S.C., Lam, K.-Y., Liaw, M., Hong, Z., Hanson, R.K.: J. Prop. Power 26, 2 (2010)CrossRefGoogle Scholar
  2. 2.
    Dagaut, P., Reuillon, M., Cathonnet, M.: Combust. Sci. and Tech. 95 (1994)Google Scholar
  3. 3.
    Shen, H.-P.S., Steinberg, J., Vanderover, J., Oehlschlaeger, M.A.: Energy & Fuels 23 (2009)Google Scholar
  4. 4.
    Rotavera, B., Diévart, P., Togbé, C., Dagaut, P., Petersen, E.L.: Proc. Comb. Inst. 33 (2011)Google Scholar
  5. 5.
    Horning, D.C., Davidson, D.F., Hanson, R.K.: J. Prop. Power 18 (2002)Google Scholar
  6. 6.
    Vasu, S.S., Davidson, D.F., Hong, Z., Vasudevan, V., Hanson, R.K.: Proc. Comb. Inst. 32 (2009)Google Scholar
  7. 7.
    Haylett, D.R., Cook, R.D., Davidson, D.F., Hanson, R.K.: Proc. Comb. Inst. 33 (2011)Google Scholar
  8. 8.
    Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: Comb. Flame 114 (1998)Google Scholar
  9. 9.
    Zeppieri, S.P., Klotz, S.D., Dryer, F.L.: Proc. Comb. Inst. 28 (2000)Google Scholar
  10. 10.
    Westbrook, C.K., Pitz, W.J., Herbinet, O., Curran, H.J., Silke, E.J.: Comb. Flame 156 (2009)Google Scholar
  11. 11.
    Wang, H., Dames, E., Sirjean, B., Sheen, D.A., Tangko, R., Violi, A., Lai, J.Y.W., Egolfopoulos, F.N., Davidson, D.F., Hanson, R.K., Bowman, C.T., Law, C.K., Tsang, W., Cernansky, N.P., Miller, D.L., Lindstedt, R.P.: JetSurF version 2.0 (September 2010), http://melchior.usc.edu/JetSurF/JetSurF2.0
  12. 12.
    Rotavera, B.: Chemiluminescence and ignition delay time measurements of C9H2 0. M.S. Thesis, Texas A&M University, College Station, Texas (2009)Google Scholar
  13. 13.
    Rotavera, B., Petersen, E.L., Dagaut, P.: In preparationGoogle Scholar
  14. 14.
    Sarathy, S.M., Westbrook, C.K., Mehl, M., Pitz, W.J., Togbe, C., Dagaut, P., Wang, H., Oehlschlaeger, M.A., Niemann, U., Seshadri, K., Veloo, P.S., Ji, C., Egolfopoulos, F., Lu, T.: Comb. Flame (accepted April 2011)Google Scholar
  15. 15.
    Petersen, E.L., Hanson, R.K.: Shock Waves 10 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Brandon Rotavera
    • 1
  • Eric L. Petersen
    • 1
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations