Advertisement

Measurement of H2O2 Broadening Parameters near 7.8 μm with a Shock Tube

  • Christopher J. Aul
  • Mark W. Crofton
  • John D. Mertens
  • Eric L. Petersen
Conference paper

Introduction

Hydrogen peroxide is an important intermediate species in the combustion of hydrogen and hydrocarbon-based fuels at low temperatures (850-1200K) and elevated pressures. Part of the reason for the importance of H2O2 is that the molecule produces a considerable amount of hydroxyl radicals prior to the ignition event, so it is important to have a good understanding of the kinetic reactions involving this species. In the past, a few groups–including the authors of this work–have investigated hydrogen peroxide at these elevated temperatures by using shock tubes [1]-[3]. The shock tube is an ideal experiment for investigating combustion chemistry at elevated pressures and temperatures of interest to this study. Measurements have also been made at temperatures below 900 K within static cells [4]-[6]. It is important to know how this species behaves experimentally in a combustion environment to develop and validate chemical kinetics models.

Keywords

Shock Tube Incident Shock Wave Wave Arrival Time Aerospace Corporation Ignition Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kappel, C., Luther, K., Troe, J.: Physical Chemistry Chemical Physics 4, 4392–4398 (2002)CrossRefGoogle Scholar
  2. 2.
    Hong, Z., Farooq, A., Barbour, E.A., Davidson, D.F., Hanson, R.K.: Journal of Physical Chemistry A 113, 12919–12925 (2009)CrossRefGoogle Scholar
  3. 3.
    Aul, C.J., Crofton, M.W., Mertens, J.D., Petersen, E.L.: Proceedings of the Combustion Institute 33, 709–716 (2011)CrossRefGoogle Scholar
  4. 4.
    Satterfield, C.N., Stein, T.W.: Journal of Physical Chemistry 61, 537–540 (1957)CrossRefGoogle Scholar
  5. 5.
    Hoare, D.E., Protheroe, J.B., Walsh, A.D.: Transactions of the Faraday Society 55, 548–557 (1959)CrossRefGoogle Scholar
  6. 6.
    Baldwin, R.R., Brattan, D., Tunnicliffe, B., Walker, R.W., Webster, S.J.: Combustion and Flame 15, 133–142 (1970)CrossRefGoogle Scholar
  7. 7.
    Petersen, E.L., Rickard, M.J.A., Crofton, M.W., Abbey, E.D., Traum, M.J., Kalitan, D.M.: Measurement and Science Technology 16, 1716–1729 (2005)CrossRefGoogle Scholar
  8. 8.
    Scatchard, G., Kavanagh, G.M., Ticknor, L.B.: Journal of the American Chemical Society 74, 3715–3720 (1952)Google Scholar
  9. 9.
    Arroyo, M.P., Hanson, R.K.: Applied Optics 32, 6104–6116 (1993)CrossRefGoogle Scholar
  10. 10.
    Rothman, L.S., Gordon, I.E., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Simeckova, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: Journal of Quantitative Spectroscopy and Radiative Transfer 110, 533–572 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christopher J. Aul
    • 1
  • Mark W. Crofton
    • 2
  • John D. Mertens
    • 3
  • Eric L. Petersen
    • 1
  1. 1.Texas A & M UniversityCollege StationUSA
  2. 2.The Aerospace CorporationEl SegundoUSA
  3. 3.Trinity CollegeHartfordUSA

Personalised recommendations