Skip to main content

Separation Length Scaling in Hypervelocity Double Cone Air Flows

  • Conference paper
28th International Symposium on Shock Waves
  • 1822 Accesses

Introduction

A hallmark problem in the study of shockwave/boundary-layer interactions (SBLI) is the flow over a double cone. The system of conical shocks interact with a developing boundary layer to produce a region of flow separation. Due to the presence of real gas effects (defined here to mean any deviations from perfect gas behavior resulting from thermal transitions and chemical reactions), air simulations routinely fail to match experimental data at flow enthalpies greater than 6 MJ/kg [1]. The double cone flow has been identified as an exceptionally suitable model problem due to the sensitivity of the separation zone size and heat transfer rates to real gas effects [2]. Numerous researchers have investigated these flow fields both experimentally and computationally [3, 4, 5, 6, 7]. Many studies focus on the pressure and heat transfer distributions, in an effort to verify chemical and thermal models. The development of the shock system and separation zone has been investigated with varying configurations for both double cones [8] and double wedges [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nompelis, I., Candler, G.V.: Investigation of hypersonic double-cone flow experiments at high enthalpy in the lens facility. In: Proceedings of the 45nd AIAA Aerospace Sciences Meeting, Reno, NV (2007)

    Google Scholar 

  2. Olejniczak, J., Candler, G.V., Hornung, H.G.: Computation of double-cone experiments in high enthalpy nitrogen. In: Proceedings of the 32nd AIAA Thermophysics Conference, Atlanta, GA (1997)

    Google Scholar 

  3. Olejniczak, J., Candler, G.V., Wright, M.J., Leyva, I., Hornung, H.G.: Experimental and computational study of high enthalpy double-wedge flows. J. Thermophys. and Heat Transfer 13(4), 431–440 (1999)

    Article  Google Scholar 

  4. Wright, M.J., Sinha, K., Olejniczak, J., Candler, G.V., Magruder, T.D., Smits, A.J.: Numerical and experimental investigation of double-cone shock interactions. AIAA Journal 38(12), 2268–2276 (2000)

    Article  Google Scholar 

  5. Nompelis, I., Candler, G.V., Holden, M.S.: Effect of vibrational nonequilibrium on hypersonic double-cone experiments. AIAA Journal 41(11), 2162–2169 (2003)

    Article  Google Scholar 

  6. Nompelis, I., Candler, G.V., MacLean, M., Wadhams, T.P., Holden, M.S.: Numerical investigation of high enthalpy chemistry on hypersonic double-cone experiments. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Reno, NV (2005)

    Google Scholar 

  7. Nompelis, I., Candler, G.V., MacLean, M., Wadhams, T.P., Holden, M.S.: Numerical investigation of double-cone flow experiments with high enthalpy effects. In: Proceedings of the 48rd AIAA Aerospace Sciences Meeting, Orlando, FL (2010)

    Google Scholar 

  8. Jagadeesh, G., Hashimoto, T., Naitou, K., Sun, M., Takayama, K.: Visualization of unsteady shock oscillations in the high-enthalpy flow field around double cones. Journal of Visualization 6(2), 195–203 (2003)

    Article  Google Scholar 

  9. Hashimoto, T.: Experimental investigation of hypersonic flow induced separation over double wedges. Journal of Thermal Science 18(3), 220–225 (2009)

    Article  Google Scholar 

  10. Stewartson, K., Williams, P.G.: Self-induced separation. Proc. R. Soc. London, Ser. A 312, 181 (1969)

    Article  MATH  Google Scholar 

  11. Sychev, V.V.: Asymptotic theory of separation flows. Fluid Dynamics 17, 1179 (1982)

    Article  Google Scholar 

  12. Roshko, A.: Free shear layers, base pressure and bluff-body drag. In: Symposium on Developments in Fluid Dynamics and Aerospace Engineering, Interline, Bangalore (1995)

    Google Scholar 

  13. Davis, J.P., Sturtevant, B.: Separation length in high-enthalpy shock/boundary layer interaction. Phys. Fluids 12(10), 2661–2687 (2000)

    Article  Google Scholar 

  14. Dufrene, A., Sharma, M., Austin, J.M.: Design and characterization of a hypervelocity expansion tube facility. Journal of Propulsion and Power 23(6), 1185–1193 (2007)

    Article  Google Scholar 

  15. Browne, S., Ziegler, J., Shepherd, J.E.: Numerical solution methods for shock and detonation jump conditions. Technical report, California Institute of Technology, Pasanda, Ca, GALCIT Report FM2006.006 (August 2008)

    Google Scholar 

  16. Goodwin, D.: An open-source, extensible software suite for cvd process simulation. In: Proc. of CVD XVI and EuroCVD Fourteen, pp. 155–162 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swantek, A.B., Austin, J.M. (2012). Separation Length Scaling in Hypervelocity Double Cone Air Flows. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25688-2_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25688-2_101

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25687-5

  • Online ISBN: 978-3-642-25688-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics