Separation Length Scaling in Hypervelocity Double Cone Air Flows

  • A. B. Swantek
  • J. M. Austin
Conference paper


A hallmark problem in the study of shockwave/boundary-layer interactions (SBLI) is the flow over a double cone. The system of conical shocks interact with a developing boundary layer to produce a region of flow separation. Due to the presence of real gas effects (defined here to mean any deviations from perfect gas behavior resulting from thermal transitions and chemical reactions), air simulations routinely fail to match experimental data at flow enthalpies greater than 6 MJ/kg [1]. The double cone flow has been identified as an exceptionally suitable model problem due to the sensitivity of the separation zone size and heat transfer rates to real gas effects [2]. Numerous researchers have investigated these flow fields both experimentally and computationally [3, 4, 5, 6, 7]. Many studies focus on the pressure and heat transfer distributions, in an effort to verify chemical and thermal models. The development of the shock system and separation zone has been investigated with varying configurations for both double cones [8] and double wedges [9].


Mach Number Separation Zone Double Cone AIAA Aerospace Shock System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nompelis, I., Candler, G.V.: Investigation of hypersonic double-cone flow experiments at high enthalpy in the lens facility. In: Proceedings of the 45nd AIAA Aerospace Sciences Meeting, Reno, NV (2007)Google Scholar
  2. 2.
    Olejniczak, J., Candler, G.V., Hornung, H.G.: Computation of double-cone experiments in high enthalpy nitrogen. In: Proceedings of the 32nd AIAA Thermophysics Conference, Atlanta, GA (1997)Google Scholar
  3. 3.
    Olejniczak, J., Candler, G.V., Wright, M.J., Leyva, I., Hornung, H.G.: Experimental and computational study of high enthalpy double-wedge flows. J. Thermophys. and Heat Transfer 13(4), 431–440 (1999)CrossRefGoogle Scholar
  4. 4.
    Wright, M.J., Sinha, K., Olejniczak, J., Candler, G.V., Magruder, T.D., Smits, A.J.: Numerical and experimental investigation of double-cone shock interactions. AIAA Journal 38(12), 2268–2276 (2000)CrossRefGoogle Scholar
  5. 5.
    Nompelis, I., Candler, G.V., Holden, M.S.: Effect of vibrational nonequilibrium on hypersonic double-cone experiments. AIAA Journal 41(11), 2162–2169 (2003)CrossRefGoogle Scholar
  6. 6.
    Nompelis, I., Candler, G.V., MacLean, M., Wadhams, T.P., Holden, M.S.: Numerical investigation of high enthalpy chemistry on hypersonic double-cone experiments. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting, Reno, NV (2005)Google Scholar
  7. 7.
    Nompelis, I., Candler, G.V., MacLean, M., Wadhams, T.P., Holden, M.S.: Numerical investigation of double-cone flow experiments with high enthalpy effects. In: Proceedings of the 48rd AIAA Aerospace Sciences Meeting, Orlando, FL (2010)Google Scholar
  8. 8.
    Jagadeesh, G., Hashimoto, T., Naitou, K., Sun, M., Takayama, K.: Visualization of unsteady shock oscillations in the high-enthalpy flow field around double cones. Journal of Visualization 6(2), 195–203 (2003)CrossRefGoogle Scholar
  9. 9.
    Hashimoto, T.: Experimental investigation of hypersonic flow induced separation over double wedges. Journal of Thermal Science 18(3), 220–225 (2009)CrossRefGoogle Scholar
  10. 10.
    Stewartson, K., Williams, P.G.: Self-induced separation. Proc. R. Soc. London, Ser. A 312, 181 (1969)zbMATHCrossRefGoogle Scholar
  11. 11.
    Sychev, V.V.: Asymptotic theory of separation flows. Fluid Dynamics 17, 1179 (1982)CrossRefGoogle Scholar
  12. 12.
    Roshko, A.: Free shear layers, base pressure and bluff-body drag. In: Symposium on Developments in Fluid Dynamics and Aerospace Engineering, Interline, Bangalore (1995)Google Scholar
  13. 13.
    Davis, J.P., Sturtevant, B.: Separation length in high-enthalpy shock/boundary layer interaction. Phys. Fluids 12(10), 2661–2687 (2000)CrossRefGoogle Scholar
  14. 14.
    Dufrene, A., Sharma, M., Austin, J.M.: Design and characterization of a hypervelocity expansion tube facility. Journal of Propulsion and Power 23(6), 1185–1193 (2007)CrossRefGoogle Scholar
  15. 15.
    Browne, S., Ziegler, J., Shepherd, J.E.: Numerical solution methods for shock and detonation jump conditions. Technical report, California Institute of Technology, Pasanda, Ca, GALCIT Report FM2006.006 (August 2008)Google Scholar
  16. 16.
    Goodwin, D.: An open-source, extensible software suite for cvd process simulation. In: Proc. of CVD XVI and EuroCVD Fourteen, pp. 155–162 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. B. Swantek
    • 1
  • J. M. Austin
    • 1
  1. 1.Dept. of Aerospace EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations