Advertisement

Flow Visualization of Discontinuities and Instabilities in Supersonic Flow

  • Yuxin Zhao
  • Shihe Yi
  • Jianhan Liang
Conference paper

Introduction

In most of the application occasions of supersonic and hypersonic flows, the flow characters are extremely complicated, involving a wide range of interacting scales strongly affected by compressibility, shock wave, instabilities, turbulence, and confinement of sidewalls. It has confined our scientific understanding of the referred flow mechanisms.

Keywords

Particle Image Velocimetry Flow Visualization Modulation Transfer Function Streamwise Vortex Oblique Shockwave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolling, S.D.: 50 years of Shock Wave/Boundary Layer Interaction-what Next? AIAA Paper 2000-2596 (2000)Google Scholar
  2. 2.
    Dussauge, J.-P., Piponniau, S.: Shock/boundary-layer interactions:Possible sources of unsteadiness. Journal of Fluids and Structures 24, 1166–1175 (2008)CrossRefGoogle Scholar
  3. 3.
    Gutmark, E.J., Schadow, K.C., Yu, K.H.: Mixing enhancement in supersonic free shear flows. Ann.Rev. Fluid Mech. 27, 375–417 (1995)CrossRefGoogle Scholar
  4. 4.
    Kourta, A., Sauvage, R.: Computation of supersonic mixing layers. Phys. Fluids 14, 3790–3797 (2002)CrossRefGoogle Scholar
  5. 5.
    Clemens, N.T., Mungal, M.G.: Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171–216 (1995)CrossRefGoogle Scholar
  6. 6.
    Rossmann, T., Mungal, M.G., Hanson, R.K.: An experimental investigation of high compressibility non-reacting mixing layers. AIAA Pap. 2000-0663 (2000)Google Scholar
  7. 7.
    Miller, M.F., Bowman, C.T., Mungal, M.G.: An experimental investigation of the effects of compressibility on a turbulent reacting mixing layer. J. Fluid Mech. 356, 25–64 (1998)CrossRefGoogle Scholar
  8. 8.
    Freund, J.B., Moin, P., Lele, S.K.: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229–267 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Freund, J.B., Moin, P., Lele, S.K.: Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar. J. Fluid Mech. 421, 269–291 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Herring, G.C., Hillard, M.E.: Flow visualization by elastic light scattering in the boundary layer of a supersonic flow. NASA/TM 2000-210121 (2000)Google Scholar
  11. 11.
    Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  12. 12.
    Urban, W.D., Watanabe, S., Mungal, M.G.: Velocity field of the planar shear layer: compressibility effects. AIAA Pap. 98-0697 (1998)Google Scholar
  13. 13.
    Meyers, J.F.: Doppler global velocimetry - the next generation? AIAA Pap. 92-3897 (1992)Google Scholar
  14. 14.
    Hanson, R.K., Seitzman, J.M., Paul, P.H.: Planar laser-fluorescence imaging of combustion gases. Appl. Phys. B 50, 441–454 (1990)CrossRefGoogle Scholar
  15. 15.
    Forkey, J.N., Lempert, W.R., Miles, R.B.: Accuracy limits for planar measurement of flowfield velocity, temperature and pressure using filtered Rayleigh scattering. Exp. Fluids 24, 151–162 (1998)CrossRefGoogle Scholar
  16. 16.
    Hu, H., Koochesfahani, M.M.: A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows. Exp. Fluids 33, 202–209 (2002)Google Scholar
  17. 17.
    Tedeschi, G., Gouin, H., Elina, M.: Motion of tracer particles in supersonic flows. Exp. Fluids 26, 288–296 (1999)CrossRefGoogle Scholar
  18. 18.
    Singham, S.B.: Theoretical factors in modeling polarized light scattering by arbitrary particles. Appl. Opt. 28, 5058–5064 (1989)CrossRefGoogle Scholar
  19. 19.
    Gebauer, G., Winter, J.: In situ nanoparticle diagnostics by multi-wavelength Rayleigh-Mie scattering ellipsometry. New J. of Phys. 5(38), 1–38 (2003)Google Scholar
  20. 20.
    Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775–816 (1974)CrossRefGoogle Scholar
  21. 21.
    Bernal, L.P., Roshko, A.: Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499–525 (1986)CrossRefGoogle Scholar
  22. 22.
    Dimotakis, P.E., Brown, G.L.: The mixing layer at high Reynolds number: Large-structure dynamics and entrainment. J. Fluid Mech. 78, 538–560 (1976)CrossRefGoogle Scholar
  23. 23.
    Papmoschou, D., Roshko, A.: The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453–477 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuxin Zhao
    • 1
  • Shihe Yi
    • 1
  • Jianhan Liang
    • 1
  1. 1.College of Aerospace and Material EngineeringNational University of Defense TechnologyChangshaP.R. China

Personalised recommendations