Advertisement

Determination of the Sonic Point in Unsteady Shock Reflections Using Various Techniques Based on Numerical Flowfield Analysis

  • A. Hakkaki-Fard
  • E. Timofeev

Introduction

When a moving shock wave encounters a convex cylinder, reflects from it regularly, and propagates further, at one particular shock position corresponding to the so-called sonic point the flow on the cylinder’s surface, just behind the reflected shock becomes sonic with respect to the moving reflection point. The sonic point is prominent in the theory of regular-to-Mach reflection transition as one of its possible criteria [1]. When the flow behind the reflected shock wave becomes sonic, downstream perturbations can reach the reflection point and, supposedly,may cause the regular-to-Mach reflection transition.

Keywords

Shock Wave Mach Number Incident Shock Slip Boundary Condition Incident Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Dor, G.: Shock wave reflection phenomena, 2nd edn. Springer (2007)Google Scholar
  2. 2.
    Skews, B.W., Kleine, H.: J. of Fluid Mech. 654, 195–205 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Skews, B.W., Kleine, H.: Experiments in Fluids 46(1), 65–76 (2009)CrossRefGoogle Scholar
  4. 4.
    Drikakis, D., Ofengeim, D., Timofeev, E., Voionovich, P.: J. of Fluids and Structures 11(6), 665–691 (1997)CrossRefGoogle Scholar
  5. 5.
    Hakkaki-Fard, A., Yu Su, Y., Timofeev, E.: Numerical modeling of shock wave front structure using the Navier-Stokes equations and adaptive unstructured grids. In: Proc. 17th Annual Conf. of CFD Society of Canada, Ottawa, May 3-5, 6 p (2009)Google Scholar
  6. 6.
    Ben-Dor, G., Takayama, K.: Shock Waves 2(4), 211–223 (1992)zbMATHCrossRefGoogle Scholar
  7. 7.
    Ben-Dor, G., Takayama, K.: AIAA Journal 24(4), 682–684 (1986)CrossRefGoogle Scholar
  8. 8.
    Hakkaki-Fard, A., Timofeev, E.: High resolution determination of sonic and detachment angles at shock wave reflection from a circular cylinder. In: Proc. 17th Annual Conf. of CFD Society of Canada, Ottawa, May 3-5, 6 p (2009)Google Scholar
  9. 9.
    Lock, G.D., Dewey, J.M.: Experiments in Fluids 7, 289–292 (1989)CrossRefGoogle Scholar
  10. 10.
    Longhurst, R.S.: Geometrical and physical optics, 2nd edn. Longmans, London (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Hakkaki-Fard
    • 1
  • E. Timofeev
    • 1
  1. 1.Department of Mechanical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations