Analytical and Numerical Study of Three Shock Configurations with Negative Reflection Angle

  • L. G. Gvozdeva
  • V. L. Borsch
  • S. A. Gavrenkov


The three-shock configuration is quite typical for the aircraft internal and external aerodynamics. For example, it appears at supersonic steady free-stream conditions in intakes (Fig. 1, left) and unsteady shock wave reflection from 2D wedges (Fig. 1, right). In the latter case the resulting flow is experimentally proven to be pseudo-stationary, and the triple point trajectory makes the constant angle χ with respect to the 2D wedge surface.


Shock Wave Mach Number Mach Stem Mach Shock Triple Point Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Courant, R., Friedrichs, K.O.: Supersonic Flows and Shock Waves. Intersicence, NY (1948)Google Scholar
  2. 2.
    Gvozdeva, L.G.: Conditions of Instability of Three Shock Configuration in Steady Flows. In: ISIS, vol.19, Moscow (2010)Google Scholar
  3. 3.
    Gvozdeva, L.G., Predvoditeleva, O.A.: Experimental Investigation of Mach Reflection of Shock Waves with Velocities of 1000-3000 m/s in Carbon Dioxide Gas. Nitrogen and Air. Sov. Phys. Dokl. 8(10), 694–697 (1965)Google Scholar
  4. 4.
    Bazhenova, T.V., Gvozdeva, L.G., Lobastov, Y.S., Naboko, I.M., Nemkov, R.G., Predvoditeleva, O.A.: Shock Waves in Real Gases, Nauka, Moscow (1968) (in Russian); Engl. transl. NASA TTF-585, Washington, D.C. (October 1969)Google Scholar
  5. 5.
    Bazhenova, T.V., Gvozdeva, L.G.: Unsteady Intersection of Shock Wave, Nauka, Moscow (1977) (in Russian)Google Scholar
  6. 6.
    Bazhenova, T.V., Gvozdeva, L.G., Nettleton, M.A.: Unsteady intera-tions of shock waves. Progr. Aerosp. Sci. 21(4), 250–322 (1984)Google Scholar
  7. 7.
    Henderson, L.F., Vasilev, E.I., Ben-Dor, G., Elperin, T.: The Wall-Jetting Effect in Mach Reflection: Theoretical Consideration and Numerical Investigation. J. Fluid Mech. 479, 259–286 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Barenblatt, G.I.: Scaling Phenomena in Fluid mechanics. CUP, Cambridge (1994)zbMATHGoogle Scholar
  9. 9.
    van Leer, B.: Flux-Vector Splitting for the Euler Equations. Lect. Notes Phys. 170, 507–512 (1981)CrossRefGoogle Scholar
  10. 10.
    Semenov, A.N., Berezkina, M.K., Krasovskaya, I.V.: Classification of Shock Wave Reflections from a Wedge. Part 2. Tech. Phys. 54(4), 497–503 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. G. Gvozdeva
    • 1
  • V. L. Borsch
    • 2
  • S. A. Gavrenkov
    • 1
  1. 1.Joint Institute for High Temperature of RASMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsDnepropetrovsk National UniversityDnepropetrovskUkraine

Personalised recommendations