Advertisement

Investigations on a Gaseous Interface Accelerated by a Converging Shock Wave

  • Xiansheng Wang
  • Ting Si
  • Zhigang Zhai
  • Minghu Wang
  • Jiming Yang
  • Xisheng Luo
Conference paper

Introduction

The shock-accelerated inhomogeneous flows have been widely investigated for the fundamental interests and diverse applications in a broad range of spatial, temporal and energy scales, such as the supernova explosions, supersonic combustions and inertial confinement fusion (ICF) implosions. The particularly simple configuration, the shock-bubble interaction [1], has been considered as a basic configuration to study the flows. With respect to the development of the density-stratified interface impulsively accelerated by a shock wave, analogies may be drawn to the study of the Richtmyer-Meshkov (RM) instability [2, 3].

Keywords

Shock Wave Shock Tube Vortical Structure Mother Wavelet Incident Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ranjan, D., Oakley, J.: Shock-Bubble Interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Meshkov, E.: Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101–104 (1969)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Markstein, G.H.: A shock tube study of the flame front-pressure wave interaction. In: 6th International Symposium on Combustion, Reinhold, New York, pp. 387–398 (1957)Google Scholar
  5. 5.
    Rudinger, G., Somers, L.M.: Behavior of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161 (1960)zbMATHCrossRefGoogle Scholar
  6. 6.
    Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical inhomogeneities. J. Fluid Mech. 181, 41 (1987)CrossRefGoogle Scholar
  7. 7.
    Layes, G., Jourdan, G., Houas, L.: Distortion of a Spherical Gaseous Interface Accelerated by a Plane Shock Wave. Phys. Rev. Lett. 91, 17 (2003)CrossRefGoogle Scholar
  8. 8.
    Ranjan, D., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of a strongly shocked gas bubble. Phys. Rev. Lett. 94, 184507 (2005)CrossRefGoogle Scholar
  9. 9.
    Ranjan, D., Niederhaus, J., Motl, B., et al.: Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett. 98, 024502 (2007)CrossRefGoogle Scholar
  10. 10.
    Tomkins, C., Kumar, S., Orlicz, G., et al.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Santhosh, K.S., Soshi, K., Sanjiva, K.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23, 024102 (2011)CrossRefGoogle Scholar
  12. 12.
    Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., et al.: A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech. 594, 85–124 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hosseini, S.H.R., Takayama, K.: Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves. Phys. Fluids 17, 084101 (2005)CrossRefGoogle Scholar
  14. 14.
    Zhai, Z.G., Liu, C.L., Qin, F.H., et al.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)CrossRefGoogle Scholar
  15. 15.
    Sun, M., Takayama, K.: Conservative smoothing on an adaptive quadrilateral grid. J. Comp. Phys. 150, 143–180 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Cohen, R.D.: Shattering of a liquid drop due to impact. Proc. R. Soc. Lond. A 435, 483–503 (1991)CrossRefGoogle Scholar
  17. 17.
    Farge, M.: Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rightley, P.M., Vorobieff, P., Martin, R., et al.: Experimental observations of the mixing transition in a shock-accelerated gas curtain. Phys. Fluids 11(1), 186–200 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiansheng Wang
    • 1
  • Ting Si
    • 1
  • Zhigang Zhai
    • 1
  • Minghu Wang
    • 1
  • Jiming Yang
    • 1
  • Xisheng Luo
    • 1
  1. 1.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiP.R. China

Personalised recommendations