Experimental Shock-Initiated Combustion of a Spherical Density Inhomogeneity

  • N. Haehn
  • C. Weber
  • J. Oakley
  • M. Anderson
  • D. Rothamer
  • D. Ranjan
  • R. Bonazza
Conference paper


A planar shock wave that impulsively accelerates a spherical density inhomogeneity baroclinically deposits vorticity and enhances the mixing between the two fluids resulting in a complex, turbulent flow field. This is known as the classical shockbubble interaction (SBI) and has been a topic of study for several decades [1,2,3,4, 5,6,7,8,9,10,11,12], and closely related the Richtmyer-Meshkov instability (RMI) [13, 14]. While the classical SBI problem concerns a reactively neutral bubble, the present experimental study is the first of its kind in which a spherical bubble filled with a stoichiometric mixture of H2 and O2 diluted with Xe is accelerated by a planar shock wave (1.35 < M < 2.85) in ambient N2, and will be referred to as reactive shock-bubble interaction (RSBI).


Shock Wave Mach Number Vortex Ring Shock Tube Induction Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics 181, 41–76 (1987)CrossRefGoogle Scholar
  2. 2.
    Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-mach-number shock-bubble interaction. Physical Review Letters 98, 024502 (2007)CrossRefGoogle Scholar
  3. 3.
    Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annual Review of Fluid Mechanics 43(1), 117–140 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ranjan, D., Niederhaus, J., Oakley, J., Anderson, M., Bonazza, R., Greenough, J.: Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations. Physics of Fluids 20, 036101 (2008)CrossRefGoogle Scholar
  5. 5.
    Haehn, N., Ranjan, D., Weber, C., Oakley, J., Anderson, M., Bonazza, R.: Experimental investigation of a twice-shocked spherical density inhomogeneity. Physica Scripta T142 (2010)Google Scholar
  6. 6.
    Niederhaus, J.H., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H., Bonazza, R.: A computational parameter study for the three-dimensional shock–bubble interaction. Journal of Fluid Mechanics 594, 85–124 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Layes, G., Jourdan, G., Houas, L.: Distortion of a spherical gaseous interface accelerated by a plane shock wave. Physical Review Letters 91(17), 174502 (2003)CrossRefGoogle Scholar
  8. 8.
    Layes, G., Jourdan, G., Houas, L.: Experimental investiagtion of the shock wave interaction with a spherical gas inhomogeneity. Physics of Fluids 17, 028103 (2005)CrossRefGoogle Scholar
  9. 9.
    Layes, G., Jourdan, G., Houas, L.: Experimental study on a plane shock wave accelerating a gas bubble. Physics of Fluids 21, 074102 (2009)CrossRefGoogle Scholar
  10. 10.
    Layes, G., LeMetayer, O.: Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Physics of Fluids 19, 042105 (2007)CrossRefGoogle Scholar
  11. 11.
    Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: Models and scaling laws. Journal of Fluid Mechanics 269, 45–78 (1994)CrossRefGoogle Scholar
  12. 12.
    Haehn, N., Weber, C., Oakley, J., Anderson, M., Ranjan, D., Bonazza, R.: Experimental investigation of a twice-shocked spherical gas inhomogeneity with particle image velocimetry. Shock Waves, 1–7 (2011)Google Scholar
  13. 13.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Physica D: Nonlinear Phenomena 12, 1–3 (1984)Google Scholar
  14. 14.
    Meshkov, E.E.: Instability of a shock wave accelerated interface between two gases. NASA Technical Translation 13, 1–14 (1970)Google Scholar
  15. 15.
    Rudinger, G., Somers, L.M.: Behavior of small regions of different gases carried in accelerated gas flows. Journal of Fluid Mechanics 7, 161–176 (1960)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gamezo, V., Khokhlov, A., Oran, E.: Deflagrations and detonations in thermonuclear supernovae. Physical Review Letters 92(21), 1–4 (2004)CrossRefGoogle Scholar
  17. 17.
    Liu, J., Liou, J., Sichel, M., Kauffman, C.: Diffraction and transmission of a detonation into a bounding explosive layer. In: Twenty-first Symposium (International) on Combustion, pp. 1639–1647 (1986)Google Scholar
  18. 18.
    Gamezo, V., Khokhlov, A., Oran, E.: Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science 299, 77–81 (2003)CrossRefGoogle Scholar
  19. 19.
    Oran, E., Gamezo, V.: Origins of the deflagration-to-detonation transition in gas-phase combustion. Combustion and Flame 148, 4–47 (2007)CrossRefGoogle Scholar
  20. 20.
    Sichel, M., Tonello, N.A., Oran, E.S., Jones, D.A.: A two–step kinetics model for numerical simulation of explosions and detonations in H2–O2 mixtures. Proc. R. Soc. Lond. A 458, 49–82 (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Tonello, N.A., Sichel, M., Oran, E.S.: Numerical simulations of the diffraction of planar detonations in H2-O2 mixtures. In: Symposium (International) on Combustion, vol. 26(2), pp. 3033–3039 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. Haehn
    • 1
  • C. Weber
    • 1
  • J. Oakley
    • 1
  • M. Anderson
    • 1
  • D. Rothamer
    • 1
  • D. Ranjan
    • 2
  • R. Bonazza
    • 1
  1. 1.University of WisconsinMadisonUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations