Particle-Impact Ignition Measurements in a High-Pressure Oxygen Shock Tube

  • Mark W. Crofton
  • Phillip T. Stout
  • Michael M. Micci
  • Eric L. Petersen


Metal particle contamination is a concern for liquid rocket engines that use enriched O2 at high pressure. It is believed that under some engine conditions contaminant particle impact could release sufficient kinetic energy to initiate combustion, providing an ignition source for engine components (e.g., turbine blades) impacted by the particles, and subsequently a combustion event that eventually consumes structural materials of the engine. It is important that the combustion properties of these candidate metal particles be studied for their propensity to cause ignition under rocket-like conditions, to reduce the risk of engine failure. Laboratory study of such a mechanism under realistic engine conditions is difficult, and data are lacking. Data that reveal the influence of particle mass, kinetic energy, impacted-surface composition, and environmental conditions on ignition propensity are valuable for launch programs involving oxidizer-rich, staged combustion engines.


Shock Wave Shock Tube Aluminum Particle Oblique Shock Normal Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benz, F.J., Williams, R.E., Armstrong, D.: Ignition of Metals and Alloys by High-Velocity Particles. In: Benning, M.A. (ed.) Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Second Volume, ASTM STP 910. American Society for Testing and Materials (1986)Google Scholar
  2. 2.
    Schoenman, L.: Journal of Propulsion and Power 3, 46–55 (1987)Google Scholar
  3. 3.
    Beckstead, M.W.: A Summary of Aluminum Combustion. RTO/VTI Special Course on Internal Aerodynamics in Solid Rocket Propulsion (May 21-23, 2002)Google Scholar
  4. 4.
    Carmona, H.A., Wittel, F.K., Kun, F., Herrmann, H.J.: Phys. Rev. E 77, 051302 (2008)CrossRefGoogle Scholar
  5. 5.
    Abraham, F.F., Brodbeck, D., Rafey, R.A., Rudge, W.E.: Physical Review Letters 73, 272–275 (1994)CrossRefGoogle Scholar
  6. 6.
    Salman, A.D., Biggs, C.A., Fu, J., Angyal, I., Szabo, M., Hounslow, M.J.: Powder Technology 128, 36–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Crofton, M.W., Petersen, E.L.: Particle-Impact Ignition in High Pressure Oxygen: Initial Results. AIAA Paper 2010-7134 (2010)Google Scholar
  8. 8.
    Zukas, J.A.: Impact Dynamics. Wiley (1990)Google Scholar
  9. 9.
    Micci, M.M., Crofton, M.W.: Hybrid Finite Element/Molecular Dynamics Simulations of Shock-Induced Particle/Wall Collisions. In: 28th International Symposium on Shock Waves (July 2011)Google Scholar
  10. 10.
    Hutchins, I.M.: Wear 70, 269–281 (1981)CrossRefGoogle Scholar
  11. 11.
    Barradas, S., Guipont, V., Molins, R., Jeandin, M., Arrigoni, M., Boustie, M., Bolis, C., Berthe, L., Ducos, M.: Journal of Thermal Spray Technology 16, 548–556 (2007)CrossRefGoogle Scholar
  12. 12.
    Crofton, M.W., Stout, P.T., Albright, T.V., Worshum, M.D., Emdee, J.L., Petersen, E.L.: Development and Characterization of a Particle-Impact Ignition Facility. AIAA Paper 2010-7133 (2010)Google Scholar
  13. 13.
    Gaydon, A.G., Hurle, J.R.: The Shock Tube in Chemical Physics, Reinhold (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark W. Crofton
    • 1
  • Phillip T. Stout
    • 1
  • Michael M. Micci
    • 2
  • Eric L. Petersen
    • 3
  1. 1.The Aerospace CorporationEl SegundoUSA
  2. 2.Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Texas A&M UniversityCollege StationUSA

Personalised recommendations