Skip to main content

A Computational Study of Supersonic Combustion Relevant to Air–Breathing Engines

  • Conference paper
  • 1938 Accesses

Introduction and Background

The development of high–speed flight and space access vehicles requires the solution of many technical challenges associated with the comparatively small net thrust at supersonic or hypersonic flight speeds. One of the more essential issues is the design of an air–breathing propulsion system capable of operating over the wide range of Mach (Ma) numbers, desired to facilitate the advancement of high–speed flight and space access vehicles. At flight speeds above Ma≈3 turbofan engines fall short since the compressed air through the engine reaches such temperatures that the compressor stage fan blades begin to fail. Instead ramjet engines, in which the profile of the air intake guarantees that the supersonic approach flow is decelerated to a subsonic flow through the combustor, where fuel is injected prior to mixing, self-ignition and combustion, may be used. However, beyond Ma≈5 extreme temperatures and pressure losses occur when decelerating the supersonic airflow to subsonic conditions, making the ramjet unpractical at higher flight speeds. At flight speeds beyond Ma≈5, supersonic combustion ramjets, or scramjets, in which the flow trough the inlet and combustor remain supersonic may be used. Achieving high combustion efficiency under such conditions, with residence time on the order of 1 ms, places extreme demands on the inlet, combustor, fuel–injector as well as on the nozzle design, [1]. The mixing of fuel and air, the self–ignition and the flame stabilization are thus critical processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curran, E., Murthy, S. (eds.): Scramjet Propulsion, ch. 189. AIAA (2000)

    Google Scholar 

  2. Oevermann, M.: Aerosp. Sci. Tech. 4, 463 (2000)

    Article  MATH  Google Scholar 

  3. Ladiende, F. (ed.): Special issue on Scramjet Combustion Technology (2010)

    Google Scholar 

  4. Menon, S., Fureby, C.: Computational Combustion. John Wiley & Sons (2010)

    Google Scholar 

  5. Oschwald, M., Guerra, R., Waidmann, W.: Int. Symp. on Special topics in Chem. Prop., p. 498 (1993)

    Google Scholar 

  6. Waidmann, W., Brummund, U., Nuding, J.: 8th Int. Symp. on Transp. Phenom. in Comb., p. 1473 (1995)

    Google Scholar 

  7. Waidmann, W., Alff, F., Brummund, U., Böhm, M., Clauss, W., Oschwald, M.: Space Tech. 15, 421 (1995)

    Article  Google Scholar 

  8. Oran, E., Boris, J.: Numerical Simulation of Reactive Flow. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R. T. Edwards, Philadelphia (2001)

    Google Scholar 

  10. Levine, R.: Molecular Reaction Dynamics. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  11. Berglund, M., Fedina, E., Fureby, C., Tegner, J., Sabel’nikov, V.: AIAA Journal 48, 540 (2010)

    Article  Google Scholar 

  12. Bensow, R., Fureby, C.: J. Turb. 8 (2007)

    Google Scholar 

  13. Baudoin, E., Nogenmyr, K., Bai, X., Fureby, C.: AIAA 2009-1178 (2009)

    Google Scholar 

  14. Weller, H., Tabor, G., Jasak, H., Fureby, C.: Comp. in Physics 12, 629 (1997)

    Google Scholar 

  15. Drikakis, D., Hahn, M., Grinstein, F., DeVore, C., Fureby, C., Liefvendahl, M., Youngs, D.: Numerics for ILES: Limiting Algorithms, ch. 4a. Cambridge University Press (2007)

    Google Scholar 

  16. Rogers, R., Chinitz, W.: AIAA Journal 21, 586 (1983)

    Article  Google Scholar 

  17. Davidenko, D., Gökalp, I., Dufour, E., Marge, P.: 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference (2006)

    Google Scholar 

  18. Berglund, M., Fureby, C.: 31st Int. Symp. on Comb. p. 2491 (2006)

    Google Scholar 

  19. Genin, F., Menon, S.: AIAA 2009-0132 (2009)

    Google Scholar 

  20. Fureby, C.: Ercoftac Bulletin. Marsh Issue (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fureby, C., Fedina, E., Tegnér, J. (2012). A Computational Study of Supersonic Combustion Relevant to Air–Breathing Engines. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25685-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25685-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25684-4

  • Online ISBN: 978-3-642-25685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics