Advertisement

An Investigation into Solver Strategies for the Modelling of Compressible Turbulent Flow

  • I. Asproulias
  • A. J. Revell
  • T. J. Craft

Introduction

Sectors of the aerospace and energy industries are amongst those interested in the efficient computational prediction of supersonic flow for both internal and external flow applications; e.g. the internal flow through engines and intake ducts, flow through nozzles, jet thrust vectoring. Shockwaves pose a numerical challenge due to the associated steep gradients in the flow field. Further physical modelling challenges arise from the interactions of these shocks with turbulent boundary layers and separated flow regions; so called Shock Boundary Layer Interactions (SWBLI). The high Reynolds numbers of many such applications mean that industry generally employs Reynolds Averaged Navier-Stokes (RANS) based approaches for turbulence.

Keywords

Turbulence Kinetic Energy Separation Bubble Reynolds Shear Stress AIAA Journal Total Variation Diminishing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardonceau, P.L.: The structure of turbulence in a supersonic shock-wave/boundary-layer interaction. AIAA Journal 22, 1254–1262 (1984)CrossRefGoogle Scholar
  2. 2.
    Bookey, P.B., Wyckham, C., Smits, A.J., Martin, M.P.: New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers. AIAA Paper 2005-309 (2005)Google Scholar
  3. 3.
    Demirdžić, I., Perić, M., Lilek, Ž.: A colocated finite volume method for predicting flows at all speeds. Int. J. Num. Meth. Fluids 16, 1029–1050 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dolling, D.S., Murphy, M.T.: Unsteadiness of the Separation Shock Wave Structure in a Supersonic Compression Ramp Flowfield. AIAA Journal 21(12) (1983)Google Scholar
  5. 5.
    Issa, R.I.: Solution of the implicitly discretized fluid flow equations by operator-splitting. J. Comp. Physics 62, 40–65 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kuntz, D.W., Amatucci, V.A., Addy, A.L.: Turbulent boundary-layer properties downstream of the shockwave/boundary-layer interaction. AIAA Journal 25, 668–675 (1987)CrossRefGoogle Scholar
  7. 7.
    Launder, B.E., Sharma, B.I.: Application of the energy dissipation model of turbulence to the calculation of ows near a spinning disk. Letters in Heat and Mass Transfer 1, 131–138 (1974)CrossRefGoogle Scholar
  8. 8.
    Menter, F., Esch, T.: Elements of Industrial Heat Transfer Prediction. In: 16th Brazilian Congress of Mechanical Engineering, COBEM (2001)Google Scholar
  9. 9.
    Patankar, S.V., Baliga, B.R.: A new Finite-Difference scheme for parabolic differential equations. Numerical Heat Transfer 1, 27 (1978)CrossRefGoogle Scholar
  10. 10.
    Ringuette, M.J., Bookey, P., Wyckham, C., Smits, A.J.: Experimental Study of a Mach 3 Compression Ramp Interaction at \(\Re_{\theta}=2400\). AIAA Journal 47(2) (2009)Google Scholar
  11. 11.
    Settles, G.S., Bogdonoff, S.M., Vas, I.E.: Incipient separation of a supersonic turbulent-boundary-layer at high-Reynolds-numbers. AIAA Journal 14, 505 (1976)CrossRefGoogle Scholar
  12. 12.
    Wu, M., Martin, M.P.: Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp. AIAA Journal 45(4), 879–889 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • I. Asproulias
    • 1
  • A. J. Revell
    • 1
  • T. J. Craft
    • 1
  1. 1.The School of MACEThe University of ManchesterManchesterUK

Personalised recommendations