Skip to main content

Scale Separation for Implicit Large Eddy Simulation

  • Conference paper
28th International Symposium on Shock Waves

Introduction

Unlike standard large eddy simulation (LES) (for a review of LES for incompressible and compressible turbulence refer e.g. to [18, 7]), implicit LES (ILES) does not require an explicitly computed sub-grid scale (SGS) closure, but rather employs an inherent, usually nonlinear, regularization mechanism due to the nonlinear truncation error of the convective-flux discretization scheme as implicit SGS model. As finite-volume discretizations imply a top-hat filtered solution, regularized finitevolume reconstruction schemes were among the first ILES approaches, such as the flux-corrected transport (FCT) method [4], the piecewise parabolic method (PPM) [5]. Although ILES is attractive due to its relative simplicity, numerical robustness and easy implementation, it often exhibits inferior performance to explicit LES [8] if the discretization scheme is not constructed properly. Some schemes, such as PPM, FCT, MUSCL [16] and WENO [3] methods, work reasonably well for ILES by being able to recover a Kolmogorov-range for high-Reynolds-number turbulence up to k max /2, where k max is the Nyquist wavenumber of the underlying grid [9, 10, 21]. These promising results have led to further efforts on the physically-consistent design of discretization schemes for ILES. Physical consistency implies the correct and resolution-independent reproduction of the subgrid-scale (SGS) energy transfer mechanism of isotropic turbulence. Based on this notion the adaptive local deconvolution method (ALDM) has been developed [1, 11]. Approaches for decreasing excessive model dissipation for the solenoidal velocity field include the low-Mach number switch of [22], and the dilatation switch and shock sensor of [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, N.A., Hickel, S., Franz, S.: Implicit subgrid-scale modeling by adaptive deconvolution. J. Comput. Phys. 200(2), 412–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dynamics Research 10(4-6), 199–228 (1992)

    Article  Google Scholar 

  5. Colella, P., Woodward, P.R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, A.W.: Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Physics of Fluids 19, 055103 (2007)

    Article  Google Scholar 

  7. Garnier, E., Adams, N.A., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)

    Google Scholar 

  8. Garnier, E., Mossi, M., Sagaut, P., Comte, P., Deville, M.: On the use of shock-capturing schemes for large-eddy simulation. J. Comput. Phys. 153(2), 273–311 (1999)

    Article  MATH  Google Scholar 

  9. Grinstein, F.F., Fureby, C.: Recent progress on flux-limiting based implicit Large Eddy Simulation. In: European Conference on Computational Fluid Dynamics, ECCOMAS CFD (2006)

    Google Scholar 

  10. Grinstein, F.F., Margolin, L.G., Rider, W.: Implicit large eddy simulation: computing turbulent fluid dynamics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  11. Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213(1), 413–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229(23), 8952–8965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., et al.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229(4), 1213–1237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kawai, S., Shankar, S.K., Lele, S.K.: Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229(5), 1739–1762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: Part II: Multi-dimensional limiting process. Journal of Computational Physics 208(2), 570–615 (2005)

    Article  MATH  Google Scholar 

  17. Lesieur, M., Ossia, S.: 3D isotropic turbulence at very high Reynolds numbers: EDQNM study. Journal of Turbulence 1(7), 1–25 (2000)

    Google Scholar 

  18. Sagaut, P.: Large eddy simulation for incompressible flows: an introduction. Springer (2006)

    Google Scholar 

  19. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Skrbek, L., Stalp, S.R.: On the decay of homogeneous isotropic turbulence. Physics of Fluids 12, 1997 (2000)

    Article  Google Scholar 

  21. Thornber, B., Mosedale, A., Drikakis, D.: On the implicit large eddy simulations of homogeneous decaying turbulence. J. Comput. Phys. 226(2), 1902–1929 (2007)

    Article  MATH  Google Scholar 

  22. Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., Williams, R.J.R.: An improved reconstruction method for compressible flows with low Mach number features. J. Comput. Phys. 227(10), 4873–4894 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, X.Y., Adams, N.A. (2012). Scale Separation for Implicit Large Eddy Simulation. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25685-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25685-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25684-4

  • Online ISBN: 978-3-642-25685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics