Thrust Shock Vector Control of an Axisymmetric C-D Nozzle via Transverse Gas Injection

  • V. Zmijanovic
  • V. Lago
  • S. Palerm
  • J. Oswald
  • M. Sellam
  • A. Chpoun

Introduction

The flowfield resulting from the transverse gas injection into the supersonic cross-flow is the problematic of many aerospace applications ranging from the scram-jet fuel injection to the reaction jets and fluidic thrust vectoring(FTV). The prominent case of FTV by the use of the secondary injection represents promisingly attractive and effective way of control for small aerospace vehicles. Main advantages of the FTV are light-weightiness, simplicity and potential efficiency of such system comparing to the conventional mechanical TVC and mechanical deflectors. [5] Elimination of heavy and robust actuators and their replacement with only the fast-opening valves leads to the very significant reduction in mass. Fast dynamic response (~500Hz) to the conventional (~30Hz) [8] , very small losses in specific impulse and thus thrust are promising efficiency benefits. The CNES ”Perseus” project which this study is part of and design concept have aim of incorporating fluidic TVC on the future ”micro” launcher. Some of the results from the ongoing investigation are presented in this article.

Keywords

Mach Disk Settling Chamber Nozzle Pressure Ratio Conical Nozzle Secondary Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neilson, J.H., Gilchrist, A., Lee, C.K.: Side thrust control by secondary gas injection into rocket nozzles. Journal Mechanical Engineering Science 10, 3 (1968)CrossRefGoogle Scholar
  2. 2.
    Santigo, J.G., Dutton, J.: Crossflow vortices of a jet injected into a supersonic crossflow. AIAA Journal 35, 5 (1997)Google Scholar
  3. 3.
    Spaid, F.W., Zukoski, E.E.: Study of the interaction of gaseous jets from transverse slots with supersonic external flows. AIAA Journal 6, 2 (1968)CrossRefGoogle Scholar
  4. 4.
    Durand, P., Vieille, B., Lambare, H., Vuillermoz, P., Boure, G., Steinfeld, P., Godfroy, F., Guery, J.F.: CPS: A three-dimensional CFD numerical code dedicated to space propulsive flows. AIAA A00-36976 3864 (2000)Google Scholar
  5. 5.
    Wing, D.J., Giuliano, V.J.: Fluidic thrust vectoring of an axisymmetric exhaust nozzle at static conditions. ASME FEDSM97-3228 (1997)Google Scholar
  6. 6.
    Masuya, G., Chinzei, N., Ishii, S.: Secondary gas injection into a supersonic conical nozzle. AIAA Journal 15, 3 (1977)CrossRefGoogle Scholar
  7. 7.
    Maarouf, N., Sellam, M., Grignon, M., Chpoun, A.: Thrust vectoring through fluid injection in an axisymmetrical supersonic nozzle. ISSW 26(2), 1141–1147 (2007)Google Scholar
  8. 8.
    Mangin, B., Chpoun, A., Jacquin, L.: Experimental and numerical study of the fluidic thrust vectoring of a two-dimensional supersonic nozzle. AIAA 2006-3666 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Zmijanovic
    • 1
    • 2
  • V. Lago
    • 1
  • S. Palerm
    • 2
  • J. Oswald
    • 2
  • M. Sellam
    • 3
  • A. Chpoun
    • 3
  1. 1.C.N.R.S.-ICARE, 1C Av. de la Recherche ScientifiqueOrleansFrance
  2. 2.C.N.E.S. Direction des lanceurs, Rond Point de ’Espace -CourcouronnesEvryFrance
  3. 3.LMEE d’EvryUniversite d’Evry Val d’EssonneEvryFrance

Personalised recommendations