Advertisement

Triple–Shock–Wave Configurations: Comparison of Different Thermodynamic Models for Diatomic Gases

  • P. S. Mostovykh
  • V. N. Uskov

Introduction

Triple-shock-wave configurations (TC) were experimentally reported by E. Mach in 1878 [1]. The first detailed experimental and theoretical investigation of the TC was fulfilled by J. von Neumann in 1943 [2]. In the theoretical description of the TC in the von Neumann article [2] (known as the three-shock theory) gas was supposed thermally and calorically perfect. The three-shock theory is based on the Euler equations in the integral form, and expresses all non-dimensional TC parameters through the two basic ones: the initial flow Mach number M and either the incident shock intensity J 1 or its inclination angle σ e1 [3]. In [4] the problem of a moving shock wave reflection from a plane wedge with a TC formation in real gases (nitrogen, air and oxygen) was considered.

Keywords

Shock Wave Mach Number Inclination Angle Incident Shock Oblique Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mach, E.: Uber den verlauf von funkenwellen in der ebene und im raume. Sitzungsbr. Akad. Wiss. Wien 78, 819–838 (1878)Google Scholar
  2. 2.
    von Neumann, J.: Oblique reflection of shocks. In: Collected Works, 6th edn., pp. 239–299. Pergamon (1943, 1963)Google Scholar
  3. 3.
    Henderson, L.F.: On the confluence of the three shock waves in a perfect gas. Aeronautical Quarterly XV, 181–197 (1964)Google Scholar
  4. 4.
    Ben–Dor, G., Glass, I.I.: Domains and boundaries of non–stationary oblique shock–wave reflexions. Diatomic gas. J. Fluid Mech. 92, pt. 3, 459–496 (1979)CrossRefGoogle Scholar
  5. 5.
    Tatum, K.E.: Computation of thermally perfect oblique shock wave properties, pp. 1–1, AIAA Paper 97–0868 (1997)Google Scholar
  6. 6.
    McBride, B.J., Gordon, S., Reno, M.A.: Thermodynamic data for fifty reference elements. NASA TP–3287 (1993)Google Scholar
  7. 7.
    McBride, B.J., Heimel, S., Ehlers, J.G., Gordon, S.: Thermodynamic properties to 60000K for 210 substances involving the first 18 elements. NASA SP–3001 (1963)Google Scholar
  8. 8.
    Kalghatgi, G.T., Hunt, B.L.: The three–shock confluence problem for normally impinging overexpanded jets. The Aeronautical Quarterly XXVI, 117–132 (1975)Google Scholar
  9. 9.
    Uskov, V.N., Chernyshov, M.V.: Special and extreme triple–shock–waves configurations. J Appl. Mech. Tech. Phys. 47(4), 492–504 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. S. Mostovykh
    • 1
  • V. N. Uskov
    • 1
  1. 1.Aerospace Dept.Baltic State Technical UniversitySt. PetersburgRussia

Personalised recommendations