Advertisement

Numerical Simulation of Shock Wave Entry and Propagation in a Microchannel

  • G. V. Shoev
  • Ye. A. Bondar
  • D. V. Khotyanovsky
  • A. N. Kudryavtsev
  • G. Mirshekari
  • M. Brouillette
  • M. S. Ivanov
Conference paper

Introduction

The effects of viscosity and heat conduction, heat losses due to the wall heat transfer, as well as nonequilibrium phenomena can play an important role in microflows. Recent numerical investigations [1] of shock wave propagation in a microchannel with allowance for viscosity and rarefaction effects revealed significant differences from the inviscid theory, which ensures a correct description of the majority of specific features of macroflows. In that work, the shock wave was generated by breakdown of a diaphragm separating high-pressure and low-pressure domains.

Keywords

Shock Wave Shock Tube Incident Shock Wave Pressure History Transmitted Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zeitoun, D.E., Burtschell, Y., Graur, I.A., Ivanov, M.S., Kudryavtsev, A.N., Bondar, Y.A.: Numerical simulation of shock wave propagation in microchannels using continuum and kinetic approaches. Shock Waves 19, 307–316 (2009)CrossRefGoogle Scholar
  2. 2.
    Mirshekari, G., Brouillette, M.: One-dimensional model for microscale shock tube flow. Shock Waves 19, 25–38 (2009)CrossRefGoogle Scholar
  3. 3.
    Parisse, J.D., Giordano, J., Perrier, P., Burtschell, Y., Graur, I.A.: Numerical investigation of micro shock waves generation. Microfluid Nanofluid 6, 699–709 (2008)CrossRefGoogle Scholar
  4. 4.
    Mirshekari, G., Brouillette, M.: Experimental study of the shock propagation in a micron-scale channel. In: Proceedings of the 27th ISSW, vol. 260 (2009)Google Scholar
  5. 5.
    Bird, G.: Molecular gas dynamics and the direct simulation of gas flows. Oxford Press (1994)Google Scholar
  6. 6.
    Jiang, G., Shu, C.: Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ivanov, M., Markelov, G., Gimelshein, S.: Statistical simulation of reactive rarefied flows: numerical approach and applications, AIAA Paper, 98-2669 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. V. Shoev
    • 1
  • Ye. A. Bondar
    • 1
  • D. V. Khotyanovsky
    • 1
  • A. N. Kudryavtsev
    • 1
  • G. Mirshekari
    • 2
  • M. Brouillette
    • 2
  • M. S. Ivanov
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied MechanicsNovosibirskRussia
  2. 2.Department of Mechanical EngineeringUniversite de SherbrookeSherbrookeCanada

Personalised recommendations