Advertisement

Numerical Simulation of a Shock-Accelerated Multiphase Fluid Interface

  • Michael Anderson
  • Peter Vorobieff
  • Sanjay Kumar
  • Joseph Conroy
  • Ross White
  • Charles Needham
  • C. Randall Truman

Introduction

A Richtmyer-Meshkov Instability (RMI) [1, 2] is generated when an interface between two different fluids is impulsively accelerated. The instability develops due to misalignment of the density and pressure interfaces. This misalignment results in the deposition of vorticity, causing the formation of an instability that grows nonlinearly with time and eventually may transition to fully turbulent flow. It has been recently shown that a similar class of instability can evolve in a multi-phase flow [3], where the density gradient is caused by a second, non-fluid phase.

Keywords

Mach Number Shock Tube Shock Acceleration Initial Condition Oblique Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Comm. Pure App. Math. 13, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Meshkov, E.E.: Instability of the interface of two gases accelerated by a shockwave. Izv. AN SSSR, Mekh. Zhidk. Gaza 4, 151–157 (1969)MathSciNetGoogle Scholar
  3. 3.
    Vorobieff, P., et al.: Shock-driven hydrodynamic instability induced by particle seeding. Procedings of the National Academy of Sciences (under consideration)(2010)Google Scholar
  4. 4.
    Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5, 2239 (1993), doi:10.1063/1.858562CrossRefGoogle Scholar
  5. 5.
    Tomkins, C., et al.: Flow morphologies of two shock-accelerated unstable gas cylinders. Journal of Visualization 5(3), 273–283 (2002), doi:10.1007/BF03182335CrossRefGoogle Scholar
  6. 6.
    Carney, T., Needham, C.E.: Instabilities and Turblence in Intermediate Altitude Fireballs, September 3 (1991) (UNCLASSIFIED)Google Scholar
  7. 7.
    Crepeau, J., Hikida, S., Needham, C.E.: Second Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC): Methodology, vol.1, May 16 (2001) (UNCLASSIFIED) Google Scholar
  8. 8.
    Rightley, P.M., Vorobieff, P., Benjamin, R.F.: Evolution of a shock-accelerated thin fluid layer. Phys. Fluids 9, 1770–1782 (1997)CrossRefGoogle Scholar
  9. 9.
    Orlicz, G.C., et al.: A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain. Phys. Fluids 21, 064102Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Anderson
    • 1
    • 2
  • Peter Vorobieff
    • 2
  • Sanjay Kumar
    • 3
  • Joseph Conroy
    • 2
  • Ross White
    • 2
  • Charles Needham
    • 1
  • C. Randall Truman
    • 2
  1. 1.Applied Research Associates, Inc.AlbuquerqueNew Mexico
  2. 2.Department of Mechanical EngineeringUniversity of New MexicoAlbuquerqueNew Mexico
  3. 3.Department of EngineeringUniversity of TexasBrownsville

Personalised recommendations