Skip to main content

Numerical Simulation of a Shock-Accelerated Multiphase Fluid Interface

  • Conference paper
28th International Symposium on Shock Waves

Introduction

A Richtmyer-Meshkov Instability (RMI) [1, 2] is generated when an interface between two different fluids is impulsively accelerated. The instability develops due to misalignment of the density and pressure interfaces. This misalignment results in the deposition of vorticity, causing the formation of an instability that grows nonlinearly with time and eventually may transition to fully turbulent flow. It has been recently shown that a similar class of instability can evolve in a multi-phase flow [3], where the density gradient is caused by a second, non-fluid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Comm. Pure App. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  2. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shockwave. Izv. AN SSSR, Mekh. Zhidk. Gaza 4, 151–157 (1969)

    MathSciNet  Google Scholar 

  3. Vorobieff, P., et al.: Shock-driven hydrodynamic instability induced by particle seeding. Procedings of the National Academy of Sciences (under consideration)(2010)

    Google Scholar 

  4. Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5, 2239 (1993), doi:10.1063/1.858562

    Article  Google Scholar 

  5. Tomkins, C., et al.: Flow morphologies of two shock-accelerated unstable gas cylinders. Journal of Visualization 5(3), 273–283 (2002), doi:10.1007/BF03182335

    Article  Google Scholar 

  6. Carney, T., Needham, C.E.: Instabilities and Turblence in Intermediate Altitude Fireballs, September 3 (1991) (UNCLASSIFIED)

    Google Scholar 

  7. Crepeau, J., Hikida, S., Needham, C.E.: Second Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC): Methodology, vol.1, May 16 (2001) (UNCLASSIFIED)

    Google Scholar 

  8. Rightley, P.M., Vorobieff, P., Benjamin, R.F.: Evolution of a shock-accelerated thin fluid layer. Phys. Fluids 9, 1770–1782 (1997)

    Article  Google Scholar 

  9. Orlicz, G.C., et al.: A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain. Phys. Fluids 21, 064102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anderson, M. et al. (2012). Numerical Simulation of a Shock-Accelerated Multiphase Fluid Interface. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25685-1_141

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25685-1_141

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25684-4

  • Online ISBN: 978-3-642-25685-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics