Improved Shock Wave-Assisted Bacteria Transformation

  • A. M. Loske
  • J. Campos-Guillén
  • M. de Icaza-Herrera
  • F. Fernández
  • E. Castaño-Tostado


The research on shock-wave induced bio-effects is expanding rapidly where an emerging field is the so-called cell transformation, i.e., the uptake of deoxyribonucleic acid (DNA) from the surrounding. ‘Competent bacteria’ are those which are capable of being transformed. The standard method to identify transformed cells uses plasmids (DNA molecules that replicate independently of the chromosomal DNA) containing a gene that increases bacteria resistance to the antibiotic they are normally sensitive to. After plating the bacteria on a medium containing the antibiotic, only the transformed cells proliferate. Chilling the cells in CaCl2, shocking them with an electric field to create holes in the membrane, and ultrasound are physical methods to increase bacteria competence [1]. Nevertheless, there is still a lack of efficient methods for DNA delivery. Cell transformation by ultrasound is based on cavitation-induced membrane permeability [2]. Shock wave-induced sonoporation has also been associated with cavitation, i.e. growth and collapse of microbubbles [3-5]. In most studies clinical shock wave generators have been adapted to apply up to several hundredths of shock waves to a vial containing cells in suspension. After passage of each shock wave, a cloud of bubbles forms inside the vial. These bubbles expand and collapse violently after approximately \(250-500\ \mu\)s, emitting high speed microjets that are supposed to be responsible for cell transformation [6]. Microjet emission can be intensified if a second shock wave (Fig. 1) arrives shortly before the bubbles start to collapse. This phenomenon has been used to improve kidney stone fragmentation [7-8]. Temperature is another factor affecting cell transformation. Increased membrane permeability due to a temperature reduction has been reported [9]; however, if temperature reduction enhances microjet emission and thus contributes to cell transformation is unknown. To analyze this issue, the dynamics of a bubble immersed in water was simulated by using a well-known numerical model. The object of this study is to enhance shock wave-induced transfer of plasmids into E. coli using tandem shock waves and to analyze the influence of the temperature on bubble dynamics and cell transformation.


Shock Wave Cell Transformation Bubble Radius Increase Membrane Permeability Shock Wave Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, I., Christie, P.J., Dubnau, D.: The ins and outs of DNA transfer in bacteria. Science 310(5753), 1456–1460 (2005)CrossRefGoogle Scholar
  2. 2.
    Newman, C.M.H., Bettinger, T.: Gene therapy progress and prospects: Ultrasound for gene transfer. Gene Ther. 14, 465–475 (2007)CrossRefGoogle Scholar
  3. 3.
    Lauer, U., Bürgelt, E., Squire, Z., Messmer, K., Hofschneider, P.H., Gregor, M., Delius, M.: Shock wave permeabilization as a new gene transfer method. Gene Ther. 4, 710–715 (1997)CrossRefGoogle Scholar
  4. 4.
    Jagadeesh, G., Nataraja, K.N., Udayakumar, M.: Shock waves can enhance bacterial transformation with plasmid DNA. Curr. Sci. India 87(6), 734–735 (2004)Google Scholar
  5. 5.
    Armenta, E., Varela, A., Martínez de la Escalera, G., Loske, A.M.: Transfección de células por medio de ondas de choque. Rev. Mex. Fis. 52(4), 352–358 (2006)Google Scholar
  6. 6.
    Ohl, C.D., Ikink, R.: Shock-wave-induced jetting of micron-size bubble. Phys. Rev. Lett. 90(21), 214502–214505 (2003)CrossRefGoogle Scholar
  7. 7.
    Loske, A.M., Prieto, F.E., Fernández, F., van Cauwelaert: Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. J. Phys. Med. Biol. 47(22), 3945–3957 (2002)CrossRefGoogle Scholar
  8. 8.
    Fernández, F., Fernández, G., Loske, A.M.: Treatment time reduction using tandem shockwaves for lithotripsy: an in vivo study. J. Endourol. 23(8), 1247–1253 (2009)CrossRefGoogle Scholar
  9. 9.
    Hanahan, D.: Studies on transformation of Escherichia coli with plasmids. J. Molecular Biol. 166(4), 557–580 (1983)CrossRefGoogle Scholar
  10. 10.
    Chung, C.T., Niemela, S.L., Miller, R.H.: One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. P. Natl. Acad. Sci. USA 86, 2172–2175 (1989)CrossRefGoogle Scholar
  11. 11.
    Church, C.C.: A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust. Soc. Am. 86, 215–227 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. M. Loske
    • 1
  • J. Campos-Guillén
    • 2
  • M. de Icaza-Herrera
    • 1
  • F. Fernández
    • 1
  • E. Castaño-Tostado
    • 3
  1. 1.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
  2. 2.Facultad de Ciencias NaturalesUniversidad Autónoma de QuerétaroJuriquillaMexico
  3. 3.Facultad de QuímicaUniversidad Autónoma de QuerétaroJuriquillaMexico

Personalised recommendations