Magnetic Configuration Effect on the Interaction between the Weakly Ionized Flow and the Applied Magnetic Field

  • M. Kawamura
  • H. Katsurayama
  • H. Otsu
  • K. Yamada
  • T. Abe
Conference paper


Since the pioneering work by Ziemer et al.[1], the interaction of the weakly ionized flow with a magnetized body has been investigated both experimentally[3, 4, 5, 6, 7, 2, 8] and numerically[9, 10, 11, 12]. This interaction has become a topic of interest as it has attractive applications to the mitigation of aerodynamic heating in hypersonic flight vehicles, which was numerically demonstrated by Poggie[9] and known as the electrodynamic heat-shield. Thus far, except for limited reports[13, 8], mitigation of aerodynamic heating has not been experimentally demonstrated. One such recent report was made by Gülhan, but its result is still debatable[14]. Alongside the experimental efforts, numerical investigations have been conducted intensively[10, 11, 12]. It has come to our attention that, unlike the simple flow model assumed by Poggie[9], the interaction may be influenced by a variety of effects such as the Hall effect [10].


Hall Effect Stagnation Point AIAA Paper Shock Layer Surface Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ziemer, R., Bush, W.: Magnetic Field Effects on Bow Shock Stand-Off Distance. Physical Review Letters 1(2), 58–59 (1958)CrossRefGoogle Scholar
  2. 2.
    Bityurin, V., Bocharov, A., Lineberry, J.: MHD Flow Control in Hypersonic Flight. AIAA Paper 2005-3225 (2005)Google Scholar
  3. 3.
    Takizawa, Y., Matsuda, A., Sato, S., Abe, T., Konigorski, D.: Physics of Fluids 18, 117105–117110 (2006)CrossRefGoogle Scholar
  4. 4.
    Matsuda, A., Otsu, H., Kawamura, M., Konigorski, D., Takizawa, Y., Sato, S., Abe, T.: Physics of Fluids 20, 027102 (2008)Google Scholar
  5. 5.
    Matsuda, A., Otsu, H., Kawamura, M., Konigorski, D., Takizawa, Y., Abe, T.: Physics of Fluids 20, 127103 (2008)CrossRefGoogle Scholar
  6. 6.
    Tanifuji, T., Wasai, K., Makino, H., Otsu, H., Furudate, M., Yamasakik, H., Konigorski, D., Abe, T.: AIAA Paper 2008-3789 (2008)Google Scholar
  7. 7.
    Kawamura, M., Matsuda, A., Katsurayama, H., Otsu, H., Konigorski, D., Sato, S., Abe, T.: Journal of Spacecraft and Rockets 46(6) (November-December 2009)Google Scholar
  8. 8.
    Gülhan, A., Esser, B., Koch, U., Siebe, F., Riehmer, J., Giordano, D., Konigorski, D.: Journal of Spacecraft and Rockets 46(2) (March-April 2009)Google Scholar
  9. 9.
    Poggie, J., Gaitonde, D.V.: Physics of Fluids 14, 1720–1731 (2002)CrossRefGoogle Scholar
  10. 10.
    Otsu, H.: AIAA J. 48(10), 2177–2186 (2010)CrossRefGoogle Scholar
  11. 11.
    Katsurayama, H., Kawamura, M., Matsuda, A., Abe, T.: Journal of Spacecraft and Rockets 45(2), 248–254 (2008)CrossRefGoogle Scholar
  12. 12.
    Katsurayama, H., Abe, T., Otsu, H., Konigorski, D.: AIAA Paper 2007-4529 (2007)Google Scholar
  13. 13.
    Nowak, R., Yuen, M.: AIAA Journal 11(11), 1463–1464 (1973)CrossRefGoogle Scholar
  14. 14.
    Bityurin, V.A., Bocharov, A.N., Popov, N.: AIAA Paper 2010-4485 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Kawamura
    • 1
  • H. Katsurayama
    • 2
  • H. Otsu
    • 3
  • K. Yamada
    • 4
  • T. Abe
    • 4
  1. 1.University of TokyoBunkyoukuJapan
  2. 2.Yamaguchi UniversityUbeJapan
  3. 3.Ryukoku UniversityOtsuJapan
  4. 4.Institute of Space and Astronautical Science/JAXASagamiharaJapan

Personalised recommendations