Advertisement

Hybrid Finite Element/Molecular Dynamics Simulations of Shock-Induced Particle/Wall Collisions

  • Michael M. Micci
  • Mark W. Crofton
Conference paper

Introduction

Contaminant metal particles of the order of 100-500 microns in diameter in the liquid propellant feed systems of rocket engines are a significant hazard and safety concern. These particles may originate from within the propellant tanks, valves, feed lines, pumps, or the propellant itself. Ignition and combustion of the particles when located within a supercritical oxygen-rich environment, such as would be found in an oxidizer-rich rocket engine system, could release a significant amount of energy. In addition, particle impacts with the walls of the propellant feed systems could sufficiently heat the particles to ignite them or to fracture them into smaller particles that are easier to subsequently ignite. Experiments are currently underway at The Aerospace Corporation to improve the knowledge base for particle-impact ignition. Oxygen pressure, particle size and kinetic energy, and the occurrence of fragmentation upon impact are among the parameters to be studied where impacting particle velocity is induced by the passing of a shock wave [1]. A simulation capability, validated by the experiments, would be of value to predict the risk of possible particle contamination.

Keywords

Molecular Dynamics Velocity Maxwellian Distribution Aluminum Sphere Impact Particle Velocity Aluminum Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crofton, M.W., Petersen, E.L.: Particle-Impact Ignition in High Pressure Oxygen: Initial Results. AIAA Paper 2010-7134 (2010)Google Scholar
  2. 2.
    Abraham, F.F., Brodbeck, D., Rafey, R.A., Rudge, W.E.: Physical Review Letters 73, 272–275 (1994)CrossRefGoogle Scholar
  3. 3.
    Smirnova, J.A., Zhigilei, L.V., Garrison, B.J.: Computer Physics Communications 118, 11–16 (1999)CrossRefGoogle Scholar
  4. 4.
    Rudd, R.E., Broughton, J.Q.: Phys. Stat. Sol (b) 217, 251–291 (2000)CrossRefGoogle Scholar
  5. 5.
    Broughton, J.Q., Abraham, F.F., Bernstein, N., Kaxiras, E.: Physical Review B 60, 2391–2403 (1999)CrossRefGoogle Scholar
  6. 6.
    Ojwang, J.G.O., van Santen, R., Kramer, G.J., van Duin, A.C.T., Goddard III, W.A.: J. Chem. Phys. 129, 244–506 (2008)Google Scholar
  7. 7.
    Mueller, J.E., van Duin, A.C.T., Goddard III, W.A.: J. Phys. Chem. C 114, 4939–4949 (2010)CrossRefGoogle Scholar
  8. 8.
    van Duin, A.C.T.: Personal communication (2011)Google Scholar
  9. 9.
    Valentini, P., Schwartzentruber, T.E., Cozmuta, I.: J. Chem. Phys. 133, 084703:1–084703:9 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Cagin, T., van Duin, A., Goddard III, W.A., Qi, Y., Hector Jr., L.G.: Physical Review B 69, 045423-1–045423-11 (2004)Google Scholar
  11. 11.
    Smith, I.M., Griffiths, D.V.: Programming the Finite Element Method, 4th edn. John Wiley and Sons (2004)Google Scholar
  12. 12.
    Crofton, M.W., Stout, P.T., Albright, T.V., Worshum, M.D., Emdee, J.L., Petersen, E.L.: Development and Characterization of a Particle-Impact Ignition Facility. AIAA Paper 2010-7133 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael M. Micci
    • 1
  • Mark W. Crofton
    • 2
  1. 1.Pennsylvania State UniversityUniversity ParkUSA
  2. 2.The Aerospace CorporationEl SegundoUSA

Personalised recommendations