Advertisement

Fast Stokes Solvers for MEMS

  • Attilio Frangi
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 63)

Abstract

Providing an estimate of gas damping in MEMS is a complex task since MEMS are fully three dimensional micro-structures which cannot in general be reduced to simple 1D or 2D models and since the gas cannot be treated as a continuum medium at the microscale. This issue is here addressed, focusing on high pressure applications, by means of integral equations and fast solvers implementing a linear incompressible Stokes formulation with slip boundary conditions. Numerical results are validated with experimental data. Extensions to high working frequencies and low pressures are discussed.

Keywords

Boundary Element Method Multipole Expansion Boundary Integral Equation Method Fast Multipole Method Fast Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1964)zbMATHGoogle Scholar
  2. 2.
    Aluru, N.R., White, J.: A fast integral equation technique for analysis of microflow sensors based on drag force calculations. In: Proc. MSM, Santa Clara, CA, pp. 283–286 (1998)Google Scholar
  3. 3.
    Barnes, J., Hut, P.: A hierarchical O(N logN) force-calculation algorithm. Nature 324, 446–449 (1986)CrossRefGoogle Scholar
  4. 4.
    Bonnet, M.: Boundary Integral Equation Methods for Solids and Fluids. Wiley, Chichester (1999)Google Scholar
  5. 5.
    Borup, D.T., Gandhi, O.P.: Calculation of high-resolution SAR distributions in biological bodies using the FFT algorithm and conjugate gradient method. IEEE Trans. Microwave Theor. Techn. 33, 417–419 (1985)CrossRefGoogle Scholar
  6. 6.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K Ned Akad Wet 60, 793–795 (1948)Google Scholar
  7. 7.
    Chaillat, S., Bonnet, M., Semblat, J.F.: A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain. Comput Methods Appl. Mech. Engrg. 197, 4233–4249 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Darve, E.: The Fast Multipole Method: Numerical Implementation. J. Comp. Phys. 160, 195–240 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Darve, E.: The fast multipole method: I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38, 98–128 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ding, J., Ye, W.: A fast integral approach for drag force calculations to to oscillatory slip Stokes flows. Int. J. Num. Meth. Engng. 60, 1535–1567 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Epton, M.A., Dembart, B.: Multipole translation theory for three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comp. 16, 865–897 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Frangi, A., Tausch, J.: A qualocation enhanced approach for the Dirichlet problem of exterior Stokes flow. Engng. Anal. Boundary Elem. 29, 886–893 (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Frangi, A., Spinola, G., Vigna, B.: On the evaluation of damping in MEMS in the slip-flow regime. Int. J. Num. Meth. Engng. 68, 1031–1051 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Frangi, A., Bonnet, M.: On the fast multipole method for the Helmholtz equation with complex frequency. CMES 58, 271–291 (2010)MathSciNetGoogle Scholar
  15. 15.
    Frayssé, V., Giraud, L., Gratton, S., Langou, J.: A set of GMRES routines for real and complex arithmetics on high performance computers. CERFACS technical report TR/PA/03/3 (2003)Google Scholar
  16. 16.
    Gad-el-Hak, M. (ed.): The MEMS handbook. CRC Press (2002)Google Scholar
  17. 17.
    Geng, N., Sullivan, A., Carin, L.: Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space. IEEE Trans. Antennas Propag. 49, 740–748 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole algorithm for the Laplace equation in three dimensions. Acta Numerica 6, 229–269 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Greengard, L., Kropinski, M.C.: An integral equation approach to the incompressible Navier-Stokes equation in two dimensions. SIAM J. Sci. Comput. 20, 318–336 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hockney, R.W., Eastwood, J.W.: Computer simulation using particles. Adam Hilger, New York (1988)zbMATHCrossRefGoogle Scholar
  23. 23.
    Liu, Y.J.: Fast Multipole Boundary Element Method - Theory and Applications in Engineering. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  24. 24.
    Lu, C.C., Chew, W.C.: Fast algorithms for solving hybrid integral equations. IEEE Proceedings-H 140, 455–460 (1993)Google Scholar
  25. 25.
    Milroy, J.S., Hinduja, S., Davey, K.: The elastostatic three dimensional boundary element method: analytical integration for linear isoparametric triangular elements. Appl. Math. Modelling 21, 763–782 (1997)zbMATHCrossRefGoogle Scholar
  26. 26.
    Mukherjee, S., Telekunta, S., Mukherjee, Y.X.: BEM modeling of damping forces on MEMS with thin plates. Engng. Anal. Boundary Elem. 29, 1000–1007 (2005)zbMATHCrossRefGoogle Scholar
  27. 27.
    Nabors, K., Korsmeyer, F.T., Leighton, F.T., White, J.: Preconditioned, adaptive, multipole-accelerated iterative methods for three-dimensional first-kind integral equations of potential theory. SIAM J. Sci. Statist Comput 15, 713–735 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Nishimura, N., Yoshida, K., Kobayashi, S.: Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int. J. Num. Meth. Engng. 50, 525–547 (2001)zbMATHCrossRefGoogle Scholar
  29. 29.
    Nishimura, N.: Fast multipole accelerated boundary integral equation methods. Appl. Mech. Reviews 55, 299–324 (2002)CrossRefGoogle Scholar
  30. 30.
    Phillips, J.R., White, J.: A precorrected-FFT method for electrostatic analysis of complicated 3D structures. IEEE Trans. Comput. Aided Devices 16, 1059–1072 (1997)CrossRefGoogle Scholar
  31. 31.
    Power, H., Wrobel, L.: Boundary Integral Methods in Fluid Mechanics. Computational Mechanics Publications, Southampton (1995)Google Scholar
  32. 32.
    Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flows. Cambridge Univeristy Press, Cambridge (1992)CrossRefGoogle Scholar
  33. 33.
    Rokhlin, V.: Rapid solution of integral equation of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Song, J., Lu, C.C., Chew, W.C.: Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans. Antennas Propag. 45, 1488–1493 (1997)CrossRefGoogle Scholar
  35. 35.
    Tausch, J., White, J.: Second kind integral formulations of the capacitance problem. Adv. Comput. Math. 9, 217–232 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Wang, X., Judy, M., White, J.: Validating fast simulation of air damping in micromachined devices. In: Proceedings of MEMS 2002 (2002)Google Scholar
  37. 37.
    Wang, X.: FastStokes: A Fast 3D Fluid Simulation Program for Micro-Electro-Mechanical Systems. PhD Thesis, MIT (2002)Google Scholar
  38. 38.
    Ye, W., Wang, X., Hemmert, W., Freeman, D., White, J.: Air damping in lateral oscillating micro-resonators: a numerical and experimental study. Journal of MEMS 12, 557–566 (2003)Google Scholar
  39. 39.
    Yasuda, Y., Sakuma, T.: Analysis of sound fields in porous materials using the fast multipole BEM. In: 37th International Congress and Exposition on Noise Control, Inter-noise 2008, Shanghai (2008)Google Scholar
  40. 40.
    Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comp. Physics 196, 591–626 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Yoshida, K.: Applications of Fast Multipole Method to Boundary Integral Equation Method. PhD Thesis, Kyoto University (2001)Google Scholar
  42. 42.
    Zacharopoulos, A.D., Arridge, S.R., Dorn, O., Kolehmainen, V., Sikora, J.: Three dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parameterisation and a boundary element method. Inverse Problems 22, 1509–1532 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Politecnico di MilanoMilanoItaly

Personalised recommendations