Additive Schwarz Methods for the hp Version of the Boundary Element Method in ℝ3

Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 63)

Abstract

For the Galerkin matrices of the hypersingular and weakly singular first kind integral equations on plane surfaces we present preconditioners obtained by additive Schwarz methods. When those integral equations are solved numerically by the Galerkin boundary element method the resulting matrices become ill-conditioned. Hence, for an efficient solution procedure appropriate preconditioners are necessary to reduce the number of CG-iterations. We consider the hp version of the boundary element method and show how to decompose the boundary element spaces such that the resulting preconditioned Galerkin matrices have in the worst case condition numbers which are only polylogarithmically growing with respect to the discretization parameters, i.e. the mesh size h and the polynomial degree p.

Keywords

Boundary Element Method Single Layer Potential Hypersingular Integral Equation Interior Function Wire Basket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bică, I.: Iterative substructuring algorithms for the p-version finite element method for elliptic problems. PhD thesis. Courant Institute of Mathematical Sciences, New York University (1997)Google Scholar
  2. 2.
    Heuer, N.: Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88(3), 485–511 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Heuer, N., Leydecker, F.: An extension theorem for polynomials on triangles. Calcolo 45(2), 69–85 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Heuer, N., Stephan, E.P.: Iterative substructuring for hypersingular integral equations in ℝ3. SIAM J. Sci. Comput. 20(2), 739–749 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Heuer, N., Stephan, E.P.: Preconditioners for the p-version of the Galerkin method for a coupled finite element/boundary element system. Num. Methods Part Diff. Eq. 14(1), 47–61 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Heuer, N., Stephan, E.P.: An additive Schwarz method for the h-p version of the boundary element method for hypersingular integral equations in ℝ3. IMA J. Numer. Anal. 21(1), 265–283 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Heuer, N., Stephan, E.P., Tran, T.: Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method. Math. Comp. 67(222), 501–518 (1998)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Heuer, N., Maischak, M., Stephan, E.P.: Preconditioned minimum residual iteration for the h-p version of the coupled FEM/BEM with quasi-uniform meshes. Numer. Linear Algebra Appl. 6(6), 435–456 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Heuer, N., Leydecker, F., Stephan, E.P.: An iterative substructuring method for the hp-version of the BEM on quasi-uniform triangular meshes. Num. Methods Part Diff. Eq. 23(4), 879–903 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Maday, Y.: Relèvements de traces polynomiales et interpolations hilbertiennes entre espaces de polynômes. C R Acad. Sci. Paris Sér. I Math. 309(7), 463–468 (1989)MathSciNetMATHGoogle Scholar
  11. 11.
    Maischak, M.: The analytical computation of the Galerkin elements for the Laplace, Lamé and Helmholtz equation in 3d-bem. Preprint, Institute of Applied Mathematics, Hannover University, Germany (1995)Google Scholar
  12. 12.
    Maischak, M., Stephan, E.P., Tran, T.: Domain decomposition methods for boundary integral equations of the first kind: numerical results. Appl. Anal. 63(1-2), 111–132 (1996)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Maischak, M., Stephan, E.P., Tran, T.: Multiplicative Schwarz algorithms for the Galerkin boundary element method. SIAM J. Numer. Anal. 38(4), 1243–1268 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Maischak, M., Stephan, E.P., Tran, T.: A multiplicative Schwarz algorithm for the Galerkin boundary element approximation of the weakly singular integral operator in three dimensions. Int. J. Pure Appl. Math. 12(1), 1–21 (2004)MathSciNetMATHGoogle Scholar
  15. 15.
    Mund, P., Stephan, E.P., Weiße, J.: Two-level methods for the single layer potential in ℝ3. Computing 60(3), 243–266 (1998)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Muñoz-Sola, R.: Polynomial liftings on a tetrahedron and applications to the h-p version of the finite element method in three dimensions. SIAM J. Numer. Anal. 34(1), 282–314 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Oswald, P.: Multilevel finite element approximation. B. G. Teubner, Stuttgart (1994)MATHGoogle Scholar
  18. 18.
    Pavarino, L.F., Widlund, O.B.: A polylogarithmic bound for an iterative substructuring method for spectral elements in three dimensions. SIAM J. Numer. Anal. 33(4), 1303–1335 (1996)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Stephan, E.P.: Boundary integral equations for screen problems in ℝ3. Integral. Eq. Oper. Theory 10(2), 236–257 (1987)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Stephan, E.P., Tran, T.: Domain decomposition algorithms for indefinite hypersingular integral equations: the h and p versions. SIAM J. Sci. Comput. 19(4), 1139–1153 (1998)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Stephan, E.P., Maischak, M., Leydecker, F.: Some Schwarz methods for integral equations on surfaces—h and p versions. Comput. Vis. Sci. 8(3-4), 211–216 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tran, T., Stephan, E.P.: Additive Schwarz methods for the h-version boundary element method. Appl. Anal. 60(1-2), 63–84 (1996)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Tran, T., Stephan, E.P.: Additive Schwarz algorithms for the p version of the Galerkin boundary element method. Numer. Math. 85(3), 433–468 (2000)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Tran, T., Stephan, E.P.: Two-level additive Schwarz preconditioners for the h-p version of the Galerkin boundary element method for 2-d problems. Computing 67(1), 57–82 (2001)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations