Turbulence Properties in Space Plasma

  • Yasuhito Narita
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Multi-point measurements of Cluster are extensively used for revealing the spatial structure and the temporal evolution of space plasma turbulence. In particular, energy spectra and dispersion relation are determined from Cluster data in the solar wind and regions upstream and downstream of the Earth bow shock (foreshock and magnetosheath). These analysis methods can visualize anisotropies and dispersion relations in space plasma turbulence.


Solar Wind Collisionless Shock Magnetic Field Fluctuation Solar Wind Turbulence Foreshock Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Coleman, P.J. Jr: Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371–388 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    Matthaeus, W.H., Goldstein, M.L.: Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 6011–6028 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Matthaeus, W.H., Goldstein, M.L., Smith, C.: Evaluation of magnetic helicity in homogeneous turbulence. Phys. Rev. Lett. 48, 1256–1259 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    Marsch, E., Tu, C.-Y.: On the radial evolution of MHD turbulence in the inner heliosphere. J. Geophys. Res. 95, 8211–8229 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W. H.: Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775–4787 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Podesta, J.J., Roberts, D.A., Goldstein, M.L.: Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543–548 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Marsch, E., Tu, C.-Y.: Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlin. Processes Geophys. 4, 101–124 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Marsch, E., Goertz, C.K., Richter, K.: Wave heating and acceleration of solar wind ions by cyclotron resonance. J. Geophys. Res. 87, 5030 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Marsch, E., Tu, C.-Y.: Evidence for pitch angle diffusion of solar wind protons in resonance with cyclotron waves. J. Geophys. Res. 106, 8357–8362 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Marsch, E., Tu, C.-Y.: Anisotropy regulation and plateau formation through pitch angle diffusion of solar wind protons in resonance with cyclotron waves. J. Geophys. Res. 107, 1249 (2002)CrossRefGoogle Scholar
  11. 11.
    Bieber, J.W., Matthaeus, W.H., Smith, C.W., Wanner, W., Kallenrode, M.-B., Wibberenz, G.: Proton and electron mean free paths: The Palmer consensus revisited. Astrophys. J. 420, 294–306 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Bieber, J.W., Wannger, W., Matthaeus, W.H.: Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511–2522 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Matthaeus, W. H., Goldstein, M. L., Roberts, D. A.: Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind, J. Geophys. Res. 95, 20673–20683 (1990)Google Scholar
  14. 14.
    Carbone, V., Malara, F., Veltri, P.: A model for the three-dimensional magnetic field correlation spectra of low-frequency solar wind fluctuations during Alfvénic periods. J. Geophys. Res. 100, 1763–1778 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Dasso, S., Milano, L.J., Matthaeus, W.H., Smith, C.W.: Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. 635, L181–L184 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Pinçon, J.L., Lefeuvre, F.: Local characterization of homogeneous turbulence in a space plasma from simultaneous measurement of field components at several points in space. J. Geophys. Res. 96, 1789–1802 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Motschmann, U., Woodward, T.I., Glassmeier, K.-H., Southwood, D.J., Pinçon, J.L.: Wavelength and direction filtering by magnetic measurements at satellite arrays: generalized minimum variance analysis. J. Geophys. Res. 101, 4961–4965 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Pinçon, J.-L., Motschmann, U.: Multi-Spacecraft Filtering: General Framework, Analysis Methods for Multi-Spacecraft Data. In: Paschmann G., Daly P.W., (eds.) ISSI Sci. Rep. SR-001, chap. 3. International Space Science Institute, Berne, Switzerland, pp. 65–78 (1998)Google Scholar
  19. 19.
    Glassmeier, K.-H., Motschmann, U., Dunlop, M., Balogh, A., Acuña, M.H., Carr, C., Musmann, G., Fornaçon, K.-H., Schweda, K., Vogt, J., Georgescu, E., Buchert, S.: Cluster as a wave telescope - first results from the fluxgate magnetometer, Ann. Geophys. 19, 1439–1447 (2001) Correction in 21, 1071 (2003).Google Scholar
  20. 20.
    Rème, H., Aoustin, C., Bosqued, J.M., Dandouras, I., Lavraud, B., Sauvaud, J.A., Barthe, A., Bouyssou., , Camus T, h., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J.L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., D’Uston, C., Möbius, E., Kistler, L.M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C.W., Curtis, D.W., Ingraham, C., Lin, R.P., McFadden, J.P., Parks, G.K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M.B., Baldetti, P., Bruno, R., Chionchio, G., di Lellis, A., Marcucci, M.F., Pallocchia, G., Korth, A., Daly, P.W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E.G., Fuselier, S., Ghielmetti, A.G., Lennartsson, W., Escoubet, C.P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R.A., Papamastorakis, I., Pellat, R., Scudder, J., Sonnerup, B.: First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303–1354 (2001)Google Scholar
  21. 21.
    Narita, Y., Glassmeier, K.-H., Sahraoui, F., Goldstein, M.L.: Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104, 171101 (2010) Doi: 10.1103/PhyRevLett104.171101ADSCrossRefGoogle Scholar
  22. 22.
    Narita, Y., Glassmeier, K.-H., Goldstein, M. L., Motschmann, U., and Sahraoui, F.: Three-dimensional spatial structures of solar wind turbulence from 10,000-km to 100-km scales, Ann. Geophys. 29, 1731-1738 (2011)Google Scholar
  23. 23.
    Podesta, J.J.: Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986–999 (2009) Doi:1.1088/0004-637X/698/2/986ADSCrossRefGoogle Scholar
  24. 24.
    Parashar, T.N., Shay, M.A., Cassak, P.A., Matthaeus, W.H.: Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma. Phys. Plasmas. 16, 032310 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Svidzinski, V.A., Li, H., Rose, H.A., Albright, B.J., Bowers, K.J.: Particle in cell simulations of fast magnetosonic wave turbulenc in the ion cyclotron frequency range. Phys. Plasmas 16, 122310 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Dmitruk, P., Matthaeus, W.H.: Waves and turbulence in magnetohydrodynamic direct numerical simulations. Phys. Plasmas 16, 062304 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Yu.V.: Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Perri, S., Carbone, V., Veltri, P.: Where does fluid-like turbulence break down in the solar wind?. Astrophys. J. Lett. 725, L52–L55 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002 (2005) Doi:10.1103/PhysRevLett.94.215002ADSCrossRefGoogle Scholar
  30. 30.
    Matthaeus, W.H., Servidio, S., Dmitruk, P.: Comment on “Kinetic simulations of magnetized turbulence in astrophysical plasmas”. Phys. Rev. Lett. 101, 149501 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Narita, Y., Glassmeier, K.-H., Motschmann, U.: Wave vector analysis methods using multi-point measurements. Nonlin. Processes Geophys. 17, 383–394 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Narita, Y., Gary, S.P., Saito, S., Glassmeier, K.-H., Motschmann, U.: Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, L05101 (2011) Doi:10.1029/2010GL046588CrossRefGoogle Scholar
  33. 33.
    Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010) Doi:10.1103/PhysRevLett.105.131101ADSCrossRefGoogle Scholar
  34. 34.
    Hester, J.J., Raymond, J.C., Blair, W.P.: . Astrophys. J. 420, 721–745 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Spitler, L.G., Spangler, S.R.: Limits on enhanced radio wave scattering by supernova remnants. Astrophys. J. 632, 932–940 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Paschmann, G., Sckopke, N. Bame S.J., Asbridge, J.R., Gosling, J.T., Russell, C.T., Greenstadt, E.W.: Association of low-frequency waves with suprathermal ions in the upstream solar wind. Geophys. Res. Lett. 6, 209–212 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    Paschmann, G., Sckopke, N., Papamastorakis, I., Asbridge, J.R., Bame, S.J., Gosling, J.T.: Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock. J. Geophys. Res. 86, 4355–4364 (1981)ADSCrossRefGoogle Scholar
  38. 38.
    Narita, Y., and Glassmeier, K.-H.: Anisotropy evolution of magnetic field fluctuation through the bow shock, Earth Planets Space, 62, e1–e4, (2010)Google Scholar
  39. 39.
    Watanabe, Y., Terasawa, T.: On the excitation mechanism of the low-frequency upstream waves. J. Geophys. Res. 89, 6623–6630 (1984)ADSCrossRefGoogle Scholar
  40. 40.
    Fuselier, S.A., Thomsen, M.F., Gosling, J.T., Bame, S.J., Russell, C.T.: Gyrating and intermediate ion distributions upstream from the earth’s bow shock. J. Geophys. Res. 91, 91–99 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    Narita, Y., Glassmeier, K.-H., Schäfer, S., Motschmann, U., Sauer, K., Dandouras, I., Fornaçon, K.-H., Georgescu, E., Rème, H.: Dispersion analysis of ULF waves in the foreshock using cluster data and the wave telescope technique. Geophys. Res. Lett. 30, SSC 43–1 (2003)CrossRefGoogle Scholar
  42. 42.
    Narita, Y., Glassmeier, K.-H.: Dispersion analysis of low-frequency waves through the terrestrial bow shock. J. Geophys. Res. 110, A12215 (2005) Doi:10.1029/2005JA011256ADSCrossRefGoogle Scholar
  43. 43.
    Gary, S. P.: Theory of space plasma microinstabilities. Cambridge Atmospheric and Space Science Series, Cambridge (1993)Google Scholar
  44. 44.
    Luhmann, J.G., Russell, C.T., Elphic, R.C.: Spatial distributions of magnetic field fluctuations in the dayside magnetosheath. J. Geophys. Res. 91, 1711–1715 (1986)Google Scholar
  45. 45.
    McKenzie, J.F., Westphal, K.O.: Transmission of Alfvén waves through the Earth’s bow shock. Planet. Space Sci. 17, 1029–1037 (1969)ADSCrossRefGoogle Scholar
  46. 46.
    McKenzie, J.F., Westphal, K.O.: Interaction of hydromagnetic waves with hydromagnetic shocks. Phys. Fluids. 13, 630–640 (1970)ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    McKenzie, J.F.: Hydromagnetic wave interaction with the magnetopause and the bow shock. Planet. Space Sci. 18, 1–23 (1970)ADSCrossRefGoogle Scholar
  48. 48.
    Narita, Y., Glassmeier, K.-H., Fornaçon, K.-H., Richter, I., Schäfer, S., Motschmann, U., Dandouras, I., Rème, H., Georgescu, E.: Low frequency wave characteristics in the upstream and downstream regime of the terrestrial bow shock. J. Geophys. Res. 111, A01203 (2006) Doi:10.1029/2005JA011231CrossRefGoogle Scholar
  49. 49.
    Narita, Y., Glassmeier, K.-H.: Propagation pattern of low-frequency waves in the terrestrial magnetosheath. Ann. Geophys. 24, 2441–2444 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    Hasegawa, A.: Drift mirror instability in the magnetosphere. Ann. Fluids. 12, 2642 (1969)ADSCrossRefGoogle Scholar
  51. 51.
    Pokhotelov, O.A., Balikhin, M.A. Treumann R.A., Pavlenko, V.P.: Drift mirror instability revisited: 1. cold electron temperature limit. J. Geophys. Res. 106, 8455–8464 (2001)ADSCrossRefGoogle Scholar

Copyright information

© The Authors 2012

Authors and Affiliations

  1. 1.Institut für Geophysik und extraterrestrische PhysikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations