Yablo-Like Paradoxes and Co-induction

  • Shunsuke Yatabe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6797)


We review three pairwise similar paradoxes, the modest liar paradox, McGee’s paradox and Yablo’s paradox, which imply the ω-inconsistency. We show that is caused by the fact that co-inductive definitions of formulae are possible because of the existence of the truth predicate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A10]
    The Agda Team. The Agda Wiki (2010),
  2. [B08]
    Beall, J.: Spandrels of Truth. Oxford University Press, Oxford (2008)Google Scholar
  3. [BG08]
    Beall, J., Glanzberg, M.: Where the paths meet: remarks on truth and paradox. In: Truth. Notre Dame University Press (2008)Google Scholar
  4. [CH10]
    Cintula, P., Hajek, P.: Triangular norm based predicate fuzzy logic. Fuzzy Sets and Systems 161, 311–346 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Cq93]
    Coquand, T.: Infinite Objects in Type Theory. Types, 62–78 (1993)Google Scholar
  6. [Co06]
    Cook, R.T.: There are non-circular paradoxes (but Yablo’s isn’t one of them!). The Monist 89(1), 118–149 (2006)CrossRefGoogle Scholar
  7. [D10]
    Danielsson, N.A.: Beating the Productivity Checker Using Embedded Languages (2010) (preprint)Google Scholar
  8. [F08]
    Field, H.: Saving Truth From Paradox. Oxford (2008)Google Scholar
  9. [FS87]
    Friedman, H., Sheard, M.: An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic 33, 1–21 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [HPS00]
    Hájek, P., Paris, J.B., Shepherdson, J.C.: The Liar Paradox and Fuzzy Logic. Journal of Symbolic Logic 65(1), 339–346 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Hl05]
    Halbach, V., Horsten, L.: The Deflationist’s Axioms for Truth. In: Deflationism and Paradox, pp. 203–217. Oxford University Press, Oxford (2005)Google Scholar
  12. [Hd95]
    Hardy, J.: Is Yablo’s paradox liar-like? Analysis 55, 197–198 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [L01]
    Leitgeb, H.: Theories of truth which have no standard models. Studia Logica 68, 69–87 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [L04]
    Leitgeb, H.: Circular languages. Journal of Logic, Language and Information 13, 341–371 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Ml88]
    Martin-Lof, P.: Mathematics of infinity. In: Conference on Computer Logic, pp. 146–197 (1988)Google Scholar
  16. [Mc85]
    McGee, V.: How truthlike can a predicate be? A negative result. Journal of Philosophical Logic 17, 399–410 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [MT91]
    Milner, R., Tofte, M.: Co-induction in relational semantics. Theoretical Computer Science 87, 209–220 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [P97]
    Priest, G.: Yablo’s paradox. Analysis 57, 236–242 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Rs93]
    Restall, G.: Arithmetic and Truth in Łukasiewicz’s Infinitely Valued Logic. Logique et Analyse 36, 25–38 (1993)MathSciNetGoogle Scholar
  20. [Rt00]
    Rutten, J.J.M.M.: Universal co-algebra. Theoretical Computer Science 249, 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [T33]
    Tarski, A.: The concept of truth in the languages of the deductive sciences (1933) (polish); expanded English translation in Logic, Semantics, Metamathematics, (Hackett) pp. 152–278Google Scholar
  22. [Yb93]
    Yablo, S.: Paradox Without Self-Reference. Analysis 53, 251–252 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Yt09]
    Yatabe, S.: The revenge of the modest liar. Non-Classical Mathematics (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shunsuke Yatabe
    • 1
  1. 1.Collaborate Research Team for VerificationNational Institute of Advanced Industrial Science and TechnologyJapan

Personalised recommendations