Advertisement

Prolegomena to Salient-Similarity-Based Vague Predicate Logic

  • Satoru Suzuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6797)

Abstract

Vagueness is a ubiquitous feature that we know from many expressions in natural languages. It can invite a serious problem: the Sorites Paradox. The aim of this paper is to proposed a new version of complete logic for vague predicates - salient-similarity-based vague predicate logic (SVPL) that can avoid the Sorites Paradox and give answers to all of the Semantic Question, the Epistemological Question and the Psychological Question given by Graff.

Keywords

vagueness Sorites Paradox salient similarity JND intransitivity semiorder measurement theory representation theorem epistemicism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Åkerman, Y.: Vagueness, Belief Forming, and Similarity Constraints. In: Oxford 11th Graduate Conference (2007)Google Scholar
  2. 2.
    Beja, A., Gilboa, I.: Numerical Representations of Imperfectly Ordered Preferences (A Unified Geometric Exposition). Journal of Mathematical Psychology 36, 426–449 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cantor, G.: Beiträge zur Begründung der Transfiniten Mengenlehre I. Mathematische Annalen 46, 481–512 (1895)CrossRefzbMATHGoogle Scholar
  4. 4.
    Davidson, D., McKinsey, J.C.C., Suppes, P.: Outline of a Formal Theory of Value, I. Philosophy of Science 22, 140–160 (1955)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fechner, G.T.: Elemente der Psychophysik. Breitkopf und Hartel, Leipzig (1860)Google Scholar
  6. 6.
    Graff, D.: Shifting Sands: An Interest-Relative Theory of Vagueness. Philosophical Topics 28, 45–81 (2000)CrossRefGoogle Scholar
  7. 7.
    Heck Jr., R.G.: A Note on the Logic of (Higher-Order) Vagueness. Analysis 53, 201–208 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hölder, O.: Die Axiome der Quantität und die Lehre von Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikaliche Classe 53, 1–64 (1901)Google Scholar
  9. 9.
    Hyde, D.: Sorites Paradox. In: Stanford Encyclopedia of Philosophy (2005)Google Scholar
  10. 10.
    Krantz, D.H., et al.: Foundations of Measurement, vol. I. Academic Press, New York (1971)Google Scholar
  11. 11.
    Lehrer, K., Wagner, C.: Intransitive Indifference: The Semi-order Problem. Synthese 65, 249–256 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Luce, D.: Semiorders and a Theory of Utility Discrimination. Econometrica 24, 178–191 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Luce, R.D., et al.: Foundations of Measurement, vol. III. Academic Press, San Diego (1990)Google Scholar
  14. 14.
    Manders, K.L.: On JND Representations of Semiorders. Journal of Mathematical Psychology 24, 224–248 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Roberts, F.S.: Measurement Theory. Addison-Wesley, Reading (1979)Google Scholar
  16. 16.
    Schick, F.: Dutch Bookies and Money Pump. The Journal of Philosophy 83, 112–119 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Scott, D., Suppes, P.: Foundational Aspects of Theories of Measurement. Journal of Symbolic Logic 3, 113–128 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Simon, H.A.: Models of Bounded Rationality. The MIT Press, Cambridge (1982)Google Scholar
  19. 19.
    Suppes, P., et al.: Foundations of Measurement, vol. II. Academic Press, San Diego (1989)Google Scholar
  20. 20.
    Suzuki, S.: Prolegomena to Dynamic Epistemic Preference Logic. In: Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI 2008. LNCS (LNAI), vol. 5447, pp. 177–192. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Suzuki, S.: Measurement-Theoretic Foundation of Preference-Based Dyadic Deontic Logic. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 278–291. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Suzuki, S.: Measurement-Theoretic Foundation of Threshold Utility Maximiser’s Preference Logic. In: van Benthem, J., Yamada, T. (eds.) Electronic Post-Proceedings of the Second International Workshop on Philosophy and Ethics of Social Reality (SOCREAL 2010), pp. 83–214 (2010)Google Scholar
  23. 23.
    Suzuki, S.: Prolegomena to Threshold Utility Maximiser’s Preference Logic. In: Electronic Proceedings of the 9th Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2010), Paper No. 44 (2010)Google Scholar
  24. 24.
    Tversky, A.: Intransitivity of Preferences. Psychological Review 76, 31–48 (1969); Rpt. in: Shafir, E. (ed.): Preference, Belief and Similarity: Selected Writings / by Amos Tversky, pp. 433–461. The MIT Press, Cambridge (2004) CrossRefGoogle Scholar
  25. 25.
    Van Rooij, R.: Revealed Preference and Satisficing Behavior. In: Electronic Proceedings of 8th Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2008), Paper No. 48 (2008)Google Scholar
  26. 26.
    Van Rooij, R.: Vagueness and Linguistics. In: Ronzitti, G. (ed.) The Vagueness Handbook (forthcoming)Google Scholar
  27. 27.
    Williamson, T.: Vagueness and Ignorance. Proceedings of the Aristotelian Society, Supplementary Volumes 66, 145–162 (1992)CrossRefGoogle Scholar
  28. 28.
    Williamson, T.: Vagueness. Routledge, London (1994)Google Scholar
  29. 29.
    Wright, C.: Further Reflections on the Sorites Paradox. Philosophical Topics 15, 227–290; Rpt. In: Keefe, R. and Smith, P.: Vagueness: A Reader. The MIT Press, Cambridge (1997)Google Scholar
  30. 30.
    Wright, C.: Is Higher Order Vagueness Coherent? Analysis 52, 129–139 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Satoru Suzuki
    • 1
  1. 1.Faculty of Arts and SciencesKomazawa UniversitySetagaya-kuJapan

Personalised recommendations