Advertisement

Meandre Data-Intensive Application Infrastructure: Extreme Scalability for Cloud and/or Grid Computing

  • Bernie Ács
  • Xavier Llorà
  • Boris Capitanu
  • Loretta Auvil
  • David Tcheng
  • Mike Haberman
  • Limin Dong
  • Tim Wentling
  • Michael Welge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6797)

Abstract

The volumes and velocity of data are growing at unprecedented rates, often physically distributed, have access constraints, and requirements to leverage the diverse computational fabrics like clouds and grids. The Meandre data-intensive component-based application infrastructure can leverage diversity and enables extremely scalable server clusters and applications to address these challenges. Data-intensive flows can: be web-services and/or computational tasks; co-locate processing with data; orchestrate cloud computing resources; and leverage grid resources with distributed execution. Meandre from a laptop to a cloud, grid, or server as analytical computational tasks and/or web-services in data-intensive flows made up of components that provide deployment and execution strategies for extreme scalability.

Keywords

data-intensive components dataflow cloud grid Meandre 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beynon, M.D., Kurc, T., Sussman, A., Saltz, J.: Design of a framework for data-intensive wide-area applications. In: HCW 2000: Proceedings of the 9th Heterogeneous Computing Workshop, p. 116. IEEE Computer Society, Washington, DC (2000)Google Scholar
  2. 2.
    Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI 2004: Sixth Symposium on Operating System Design and Implementation (2004)Google Scholar
  3. 3.
    Foster, I.: The virtual data grid: A new model and architecture for data-intensive collaboration. In: The 15th International Conference on Scientific and Statistical Database Management, p. 11 (2003)Google Scholar
  4. 4.
    Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming. Theoretical Computer Science (2008), doi:10.1016/j.tcs, 09.019Google Scholar
  5. 5.
    Llorà, X., Àcs, B., Auvil, L., Capitanu, B., Welge, M., Goldberg, D.E.: Meandre: Semantic-driven data-intensive flows in the clouds. In: Proceedings of the 4th IEEE International Conference on e-Science, pp. 238–245. IEEE Press, Los Alamitos (2008)Google Scholar
  6. 6.
    Ács, B., Llorà, X., Auvil, L., Capitanu, B., Tcheng, D., Haberman, M., Dong, L., Wentling, T., Welge, M.: A general approach to data-intensive computing using the Meandre component-based framework. In: Proceedings of the 1st International Workshop on Workflow Approaches To New Data-Centric Science, Indianapolis, Indiana, June 06, pp. 1–12. ACM, New York (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernie Ács
    • 1
  • Xavier Llorà
    • 1
  • Boris Capitanu
    • 1
  • Loretta Auvil
    • 1
  • David Tcheng
    • 1
  • Mike Haberman
    • 1
  • Limin Dong
    • 1
  • Tim Wentling
    • 1
  • Michael Welge
    • 1
  1. 1.National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations