Advertisement

A Market for Pollution Emission Permits with Low Accuracy of Emission Estimates

  • Zbigniew Nahorski
  • Joanna Horabik
Chapter
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 121)

Abstract

Uncertainties of pollution inventories are often high due to low precision of emission quantity assessments for many emitting sources. A good example is emission of greenhouse gases, where uncertainty of some sources may be as high as 40-100%, while uncertainty of other sources is as low as 2-3%. This discrepancy in uncertainty should be accounted for in compliance as well as in emissions trading, because the traded commodities have different quality. The compliance and emissions trading rules have been discussed in earlier papers by the present authors [14, 15, 16, 17]. In this chapter we focus on presentation of the idea of a market for emissions with so highly scattered uncertainties.

Keywords

Pollution Emission Emission Trading Emission Inventory Uncertainty Interval Estimate Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartoszczuk, P., Horabik, J.: Tradable permit systems: Considering uncertainty in emission estimates. Water Air Soil Poll: Focus 7, 573–579 (2007)CrossRefGoogle Scholar
  2. 2.
    Ermolieva, T., Ermoliev, Y., Fischer, G., Jonas, M., Makowski, M., Wagner, F.: Carbon emission trading and carbon taxes under uncertainty. Climatic Change 103, 277–289 (2010)CrossRefGoogle Scholar
  3. 3.
    Gillenwater, M., Sussman, F., Cohen, J.: Practical policy applications of uncertainty analysis for national greenhouse gas inventories. Water Air Soil Poll: Focus 7, 451–474 (2007)CrossRefGoogle Scholar
  4. 4.
    Godal, O., Ermolev, Y., Klaassen, G., Obersteiner, M.: Carbon trading with imperfectly observable emissions. Environ. Resour. Econ. 25, 151–169 (2003)CrossRefGoogle Scholar
  5. 5.
    Graves, S.B., Ringuest, J.L.: Probabilistic dominance criteria for comparing uncertain alternatives: A tutorial. Omega 37, 346–357 (2009)Google Scholar
  6. 6.
    Hurteaux, M.D., Hungate, B.A., Koch, G.W.: Accounting for risk in valuing forest carbon offset. Carbon Balance and Management 4, 1 (2009), http://www.cbmjournal.com/content/4/1/1 CrossRefGoogle Scholar
  7. 7.
    Jonas, M., Gusti, M., Jęda, W., Nahorski, Z., Nilsson, S.: Comparison of preparatory signal detection techniques for consideration in the (post-)Kyoto policy process. In: Proc. 2nd Int. Wokshop Uncertainty in Greenhouse Gas Inventories, IIASA, Laxenburg, pp. 107–134 (2007)Google Scholar
  8. 8.
    Jonas, M., Marland, G., Winiwarter, W., White, T., Nahorski, Z., Bun, R., Nilsson, S.: Benefits of dealing with uncertainty in greenhouse gas inventories. Climatic Change 103, 3–18 (2010)CrossRefGoogle Scholar
  9. 9.
    Jonas, M., Nilsson, S.: Prior to economic treatment of emissions and their uncertainties under the Kyoto Protocol: Scientific uncertainties that must be kept in mind. Water Air Soil Poll.: Focus 7, 495–511 (2007)CrossRefGoogle Scholar
  10. 10.
    Lieberman, D., Jonas, M., Nahorski, Z., Nilsson, S. (eds.): Accounting for Climate Change. Uncertainty in Greenhouse Gas Inventories – Verification, Compliance, and Trading. Springer, Dordrecht (2007)Google Scholar
  11. 11.
    Mignone, B.K., Hurteau, M.D., Chen, Y., Sohngen, B.: Carbon offsets, reversal risk and US climate policy. Carbon Balance and Management 4, 3 (2009), http://www.cbmjournal.com/content/4/1/3 CrossRefGoogle Scholar
  12. 12.
    Monni, S., Syri, S., Pipatti, R., Savolainen, I.: Extension of EU emissions trading scheme to other sectors and gases: consequences for uncertainty of total tradable amount. Water Air Soil Poll.: Focus 7, 529–538 (2007)CrossRefGoogle Scholar
  13. 13.
    Nahorski, Z., Jęda, W., Jonas, M.: Coping with uncertainty in verification of the Kyoto obligations. In: Studziński, J., Drelichowski, L., Hryniewicz, O. (red.) Zastosowanie informatyki i analizy systemowej w zarządzaniu, IBS PAN, Warszawa, pp. 305–317 (2003)Google Scholar
  14. 14.
    Nahorski, Z., Horabik, J., Jonas, M.: Compliance and emission trading under the Kyoto Protocol: Rules for uncertain inventories. Water Air Soil Poll.: Focus 7, 539–558 (2007)CrossRefGoogle Scholar
  15. 15.
    Nahorski, Z., Horabik, J.: Compliance and emission trading rules for uncertain estimates of inventory uncertainty. In: Proc. 2nd Int. Wokshop Uncertainty in Greenhouse Gas Inventories, IIASA, Laxenburg, pp. 149–161 (2007)Google Scholar
  16. 16.
    Nahorski, Z., Horabik, J.: Greenhouse gas emission permit trading with different uncertainties in emission sources. J. Energ. Eng.-ASCE 134, 47–52 (2008)CrossRefGoogle Scholar
  17. 17.
    Nahorski, Z., Horabik, J.: Compliance and emission trading rules for asymmetric emission uncertainty estimates. Climatic Change 103, 303–325 (2010)CrossRefGoogle Scholar
  18. 18.
    Nahorski, Z., Stańczak, J., Pałka, P.: Application of multi-commodity market model for greenhouse gases emission permit trading. In: Kaleta, M., Traczyk, T. (eds.) Modelling Multi-Commodity Trade: Information Exchange Methods. Warsaw University of Technology, Institute of Control and Computation Engineering, Warsaw, pp. 108–119 (2010)Google Scholar
  19. 19.
    Ramirez, A.R., de Keizer, C., van der Sluijs, J.P.: Monte Carlo analysis of uncertainties in the Netherlands greenhouse gas emission inventory for 1990-2004. Report NWS-E-2006-58. Copernicus Institute for Sustainable Development and Innovation. Utrecht (2006), http://www.chem.uu.nl/nws/www/publica/publicaties2006/E2006-58.pdf
  20. 20.
    Roy, A.D.: Safety first and the holding of assets. Econometrica 20, 431–449 (1952)zbMATHCrossRefGoogle Scholar
  21. 21.
    Stańczak, J., Bartoszczuk, P.: CO2 emission trading model with trading prices. Climatic Change 103, 291–301 (2010)CrossRefGoogle Scholar
  22. 22.
    Winiwater, W.: National greenhouse gas inventories: understanding uncertainties versus potential for improving reliability. Water Air Soil Poll.: Focus 7, 443–450 (2004)Google Scholar
  23. 23.
    Winiwarter, W., Muik, B.: Statistical dependences in input data of national GHG emission inventories: effects on the overall GHG uncertainty and related policy issues. Presentation at 2nd Int. Workshop Uncertainty in Greenhouse Gas Inventories, September 27-28. IIASA, Laxenburg (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesKrakówPoland

Personalised recommendations