Advertisement

Application of Multi-commodity Market Model for Greenhouse Gases Emission Permits Trading

  • Zbigniew Nahorski
  • Jarosław Stańczak
  • Piotr Pałka
Chapter
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 121)

Abstract

Greenhouse gases emission permits trading can be modeled using the multi-agent platform for multi-commodity exchange. A simulation of this kind of trade is described in the paper. A party can use one of two strategies to find a good partner to achieve best gain: (i) bilateral trade with a randomly chosen feasible partner, (ii) a tender. In the tender trade, parties submit offers to the current tender operator; the tender operator chooses the offer of the party that maximizes his gain. The results of simulation are presented.

Keywords

Emission Trading Failure Detec Optimal Price Bilateral Negotiation Bilateral Contract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartoszczuk, P., Horabik, J.: Tradable permit systems: Considering uncertainty in emission estimates. Water Air Soil Poll.: Focus 7, 573–579 (2007)CrossRefGoogle Scholar
  2. 2.
    Bonatti, M., Ermoliev, Y., Gaivoronski, A.: Modeling of multi-agent market systems in the presence of uncertainty: The case of information economy. Robot. Auton. Syst. 3-4, 93–113 (1998)CrossRefGoogle Scholar
  3. 3.
    Ermoliev, Y., Klaasen, G., Nentjes, A.: Adaptive cost-effective ambient charges under incomplete information. J. Environ. Econ. Manag. 31, 37–48 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ermoliev, Y., Michalevich, M., Nentjes, A.: Markets for tradeable emission and ambient permits: A dynamic approach. Environ. Resour. Econ. 15, 39–56 (2000)CrossRefGoogle Scholar
  5. 5.
    Ermolieva, T., Ermoliev, Y., Fischer, G., Jonas, M., Makowski, M.: Cost effective and environmentally safe emission trading under uncertainty. Lect. Notes Econ. Math., vol. 633, pp. 79–99 (2010)Google Scholar
  6. 6.
    Horabik, J.: On the costs of reducing ghg emissions and its underlying uncertainties in the context of carbon trading. Tech. Rep. IR-07-036, International Institute for Applied Systems Analysis, Laxenburg (2007)Google Scholar
  7. 7.
    Kaleta, M., Pałka, P., Toczyłowski, E., Traczyk, T.: Electronic Trading on Electricity Markets within a Multi-agent Framework. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 788–799. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Mamun, Q.E.K., Masum, S.M., Mustafa, M.A.R.: Modified bully algorithm for electing coordinator in distributed systems. In: Proc. 3rd WSEAS International Conference on Software Engineering, Parallel and Distributed Systems (2004)Google Scholar
  9. 9.
    Stańczak, J., Bartoszczuk, P.: CO2 emission trading model with trading prices. Climatic Change 103, 291–301 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Zbigniew Nahorski
    • 1
  • Jarosław Stańczak
    • 1
  • Piotr Pałka
    • 2
  1. 1.Systems Research InstitutePolish Academy of SciencesKrakówPoland
  2. 2.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations