Skip to main content

The Theta Model: An Essential Forecasting Tool for Supply Chain Planning

  • Conference paper

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 123)

Abstract

The Theta model created a lot of interest in academic circles due to its surprising performance in the M3-competition, the biggest ever time series forecasting competition. As a result in the subsequent years it became a benchmark in any empirical forecasting exercise and an essential tool for efficient Supply Chain Management ad planning as it provides very accurate point forecasts. The present study focuses on if the Theta model is a special case of Simple Exponential Smoothing with drift (SES-d). The Theta model outperforms SES-d in the Quarterly-M3 and Other-M3 subsets by 0.30% and 0.36%.

Keywords

  • Theta model
  • Exponential Smoothing
  • M3-Competition
  • Supply Chain forecasting

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25646-2_56
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-25646-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assimakopoulos, V., Nikolopoulos, K.: The Theta Model: A Decomposition Approach to Forecasting. International Journal of Forecasting 16(4), 521–530 (2000)

    CrossRef  Google Scholar 

  2. Makridakis, S., Hibon, M.: The M3-Competition: results, conclusions and implications. International Journal of Forecasting 16(4), 451–476 (2000)

    CrossRef  Google Scholar 

  3. Hyndman, R.J., Billah, B.: Unmasking the Theta method. International Journal of Forecasting 19(2), 287–290 (2003)

    CrossRef  Google Scholar 

  4. Nikolopoulos, K., Maris, K., Tavanidou, E., Metaxiotis, K., Assimakopoulos, V.: Supporting Business Decisions through Forecasting: A Case Study in a Greek Tobacco Distribution Company. Journal of Information & Knowledge Management 2(3), 237–244 (2003)

    CrossRef  Google Scholar 

  5. Koning, A.J., Franses, P.H., Hibon, M., Stekler, H.O.: The M3 competition: Statistical tests of the results. International Journal of Forecasting 21(3), 397–409 (2005)

    CrossRef  Google Scholar 

  6. Nikolopoulos, K., Assimakopoulos, V.: Theta Intelligent Forecasting Information System. Industrial Management and Data Systems 103(9), 711–726 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikolopoulos, K., Assimakopoulos, V., Bougioukos, N., Litsa, A., Petropoulos, F. (2011). The Theta Model: An Essential Forecasting Tool for Supply Chain Planning. In: Lee, G. (eds) Advances in Automation and Robotics, Vol. 2. Lecture Notes in Electrical Engineering, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25646-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25646-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25645-5

  • Online ISBN: 978-3-642-25646-2

  • eBook Packages: EngineeringEngineering (R0)