Advertisement

Universal Entanglement Between an Oscillator and Continuous Fields

  • Haixing Miao
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous two chapters, we have studied the optomechanical entanglement between the optical cavity modes and the mechanical oscillator, both of which have finite degrees of freedom. In this chapter, we study the entanglement between a mechanical oscillator and a coherent continuous optical field which contains infinite degrees of freedom. This system is interesting because it lies in the heart of all optomechanical systems. With a rigorous functional analysis, we develop a new mathematical framework for treating quantum entanglement that involves infinite degrees of freedom. We show that quantum entanglement is always present between the oscillator and the continuous optical field-even when the environmental temperature is high, and the oscillator is highly classical. Such a universal entanglement is also shown to be able to survive more than one mechanical oscillation period, if the characteristic frequency of the optomechanical interaction is larger than that of the thermal noise. In addition, we introduce effective optical modes, which are ordered by their entanglement strength, to better understand the entanglement structure, in analogy with the energy spectrum of an atomic system.

Keywords

Quantum Entanglement Optical Field Mechanical Oscillator Optomechanical System Logarithmic Negativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Adesso, F. Illuminati, Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A: Math. Theor. 40(28), 7821 (2007)CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    O. Arcizet, P.-.F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)CrossRefADSGoogle Scholar
  3. 3.
    D.G. Blair, E.N. Ivanov, M.E. Tobar, P.J. Turner, van F. Kann, I.S. Heng, High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 74, 1908 (1995)CrossRefADSGoogle Scholar
  4. 4.
    D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2002)Google Scholar
  5. 5.
    V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Z.h.a.o. Chunnong, J.u. Li, M.i.a.o. Haixing, G.r.a.s. Slawomir, F.a.n. Yaohui, B.l.a.i.r. David G., Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)CrossRefGoogle Scholar
  7. 7.
    P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)CrossRefADSGoogle Scholar
  8. 8.
    LIGO Scientific Collaboration, Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11(7), 073032 (2009)Google Scholar
  9. 9.
    T. Corbitt, Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802–4 (2007)Google Scholar
  10. 10.
    T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801–4 (2007)CrossRefADSGoogle Scholar
  11. 11.
    S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, R. Schnabel, K. Danzmann, T. Corbitt, C. Wipf, N. Mavalvala, Y. Chen, Creation of a quantum oscillator by classical control. arXiv:0809.2024, 2008Google Scholar
  12. 12.
    L. Diosi, Laser linewidth hazard in optomechanical cooling. Phys. Rev. A 78, 021801 (2008)CrossRefADSGoogle Scholar
  13. 13.
    L.-.M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)CrossRefADSGoogle Scholar
  14. 14.
    I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J.P. Kotthaus, K. Karrai, Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101–3 (2007)CrossRefADSGoogle Scholar
  15. 15.
    A. Ferreira, A. Guerreiro, V. Vedral, Macroscopic thermal entanglement due to radiation pressure. Phys. Rev. Lett. 96, 060407 (2006)CrossRefADSGoogle Scholar
  16. 16.
    C. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2004)zbMATHGoogle Scholar
  17. 17.
    C. Genes, A. Mari, P. Tombesi, D. Vitali, Robust entanglement of a micromechanical resonator with output optical fields. Phys. Rev. A 78, 032316 (2008)CrossRefADSGoogle Scholar
  18. 18.
    C. Genes, D. Vitali, P. Tombesi, Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10(9), 095009 (2008)CrossRefADSGoogle Scholar
  19. 19.
    S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)Google Scholar
  20. 20.
    S. Gröblacher, S. Gigan, H.R. Böhm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. EPL (Europhys. Lett.) 81(5), 54003 (2008)Google Scholar
  21. 21.
    S. Gröblacher, J.B. Hertzberg, M.R. Vanner, G.D. Cole, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold microoptomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009)Google Scholar
  22. 22.
    M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)CrossRefADSGoogle Scholar
  23. 23.
    M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  24. 24.
    G. Jourdan, F. Comin, J. Chevrier, Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904–4 (2008)CrossRefADSGoogle Scholar
  25. 25.
    D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)CrossRefADSGoogle Scholar
  26. 26.
    S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)CrossRefADSGoogle Scholar
  27. 27.
    S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett 88, 120401 (2002)CrossRefADSGoogle Scholar
  28. 28.
    F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)CrossRefADSGoogle Scholar
  29. 29.
    C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)CrossRefADSGoogle Scholar
  30. 30.
    H. Miao, S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, Y. Chen, Probing macroscopic quantum states with a sub-Heisenberg accuracy. Phys. Rev. A 81, 012114 (2010)CrossRefADSGoogle Scholar
  31. 31.
    H. Miao, S. Danilishin, Y. Chen Universal quantum entanglement between an oscillator and continuous fields. arXiv:0908.1053, 2009Google Scholar
  32. 32.
    C.M. Mow-Lowry, A.J. Mullavey, S. Gossler, M.B. Gray, D.E. Mc- Clelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801–4 (2008)CrossRefADSGoogle Scholar
  33. 33.
    H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)CrossRefADSGoogle Scholar
  34. 34.
    A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)CrossRefADSGoogle Scholar
  35. 35.
    A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)CrossRefADSGoogle Scholar
  36. 36.
    A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  37. 37.
    S. Pirandola, S. Mancini, D. Vitali, P. Tombesi, Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure. Phys. Rev. A 68, 062317 (2003)CrossRefADSGoogle Scholar
  38. 38.
    M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett 99, 017201–4 (2007)CrossRefADSGoogle Scholar
  39. 39.
    P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009)CrossRefADSGoogle Scholar
  40. 40.
    S.W. Schediwy, C. Zhao, L. Ju, D.G. Blair, P. Willems, Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitationalwave detectors. Phys. Rev. A 77, 013813–5 (2008)CrossRefADSGoogle Scholar
  41. 41.
    A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905–4 (2006)CrossRefADSGoogle Scholar
  42. 42.
    A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)CrossRefGoogle Scholar
  43. 43.
    A. Serafini, Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 96, 110402 (2006)CrossRefADSGoogle Scholar
  44. 44.
    R. Simon, Peres-horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)CrossRefADSGoogle Scholar
  45. 45.
    J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203–4 (2008)CrossRefADSGoogle Scholar
  46. 46.
    J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)CrossRefADSGoogle Scholar
  47. 47.
    G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  48. 48.
    D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)Google Scholar
  49. 49.
    S. Vyatchanin, Effective cooling of quantum system, Dokl. Akad. Nauk SSSR 234, 688 (1977)Google Scholar
  50. 50.
    R.F. Werner, M.M. Wolf, Bound entangled gaussian states. Phys. Rev. Lett. 86, 3658 (2001)CrossRefADSGoogle Scholar
  51. 51.
    I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)CrossRefADSGoogle Scholar
  52. 52.
    C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, D.G. Blair, Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Caltech M350-17Theoretical AstrophysicsPasadenaUSA

Personalised recommendations