MQM With Three-Mode Optomechanical Interactions

  • Haixing Miao
Part of the Springer Theses book series (Springer Theses)


In this chapter, we discuss the Macroscopic Quantum Mechanics (MQM) of a three-mode optomechanical system, in which two orthogonal transverse optical cavity modes are coupled to one mechanical mode through radiation pressure. This work is motivated by the investigations of three-mode parametric instability in large-scale gravitational-wave (GW) detectors with high-power optical cavities, as first pointed out by Braginsky et al. We realized that the same mechanism that induces instability, in a different parameter regime, can also be used to cool the mechanical resonator down to its quantum ground state.


Cavity Mode Mechanical Mode Couple Cavity Tripartite Entanglement Logarithmic Negativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Adesso, F. Illuminati, Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A: Math. Theor. 40(28), 7821 (2007)CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)CrossRefADSGoogle Scholar
  3. 3.
    V.B. Braginsky , S.E. Strigin, S.P. Vyatchanin, Parametric oscillatory instability in fabry-perot interferometer. Phys. Lett. A 287, 331–338 (2001)CrossRefADSGoogle Scholar
  4. 4.
    V.B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Analysis of parametric oscillatory instability in power recycled LIGO interferometer. Phys. Lett. A 305, 111–124 (2002)CrossRefADSGoogle Scholar
  5. 5.
    V.B. Braginsky, S.P. Vyatchanin, Low quantum noise tranquilizer for fabry-perot interferometer. Phys. Lett. A 293, 228–234 (2002)CrossRefzbMATHADSGoogle Scholar
  6. 6.
    A. Buonanno, Y. Chen, Quantum noise in second generation, signalrecycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)CrossRefADSGoogle Scholar
  7. 7.
    P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)CrossRefADSGoogle Scholar
  8. 8.
    T. Corbitt, Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802–150804 (2007)Google Scholar
  9. 9.
    T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK . Phys. Rev. Lett. 99, 160801–160804 (2007)CrossRefADSGoogle Scholar
  10. 10.
    C. Genes, D. Vitali, P. Tombesi, Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10(9), 095009 (2008)CrossRefADSGoogle Scholar
  11. 11.
    C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Groundstate cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)CrossRefADSGoogle Scholar
  12. 12.
    S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)Google Scholar
  13. 13.
    S. Gras, D. Blair, L. Ju, Test mass ring dampers with minimum thermal noise. Phys. Lett. A 372, 1348–1356 (2008)CrossRefzbMATHADSGoogle Scholar
  14. 14.
    A. Gurkovsky, S. Strigin, S. Vyatchanin, Analysis of parametric oscillatory instability in signal recycled LIGO interferometer. Phys. Lett. A 362, 91–99 (2007)CrossRefADSGoogle Scholar
  15. 15.
    M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett., 101, 200503 (2008)CrossRefADSGoogle Scholar
  16. 16.
    L. Ju, S. Gras, C. Zhao, J. Degallaix, D. Blair, Multiple modes contributions to parametric instabilities in advanced laser interferometer gravitational wave detectors. Phys. Lett. A 354, 360–365 (2006) JuneGoogle Scholar
  17. 17.
    D. Kleckner, D. Bouwmeester, Subkelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)CrossRefADSGoogle Scholar
  18. 18.
    J. Laurat, G. Keller, J. Augusto, J.A. Oliveira-Huguenin, C. Fabre, T. Coudreau, A. Serafini, G. Adesso, F. Illuminati, Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation. J. Opt. B: Quantum and Semiclassical Opt. 7(12), S577 (2005)Google Scholar
  19. 19.
    S. Mancini, D. Vitali, P. Tombesi, Scheme for teleportation of quantum states onto a mechanical resonator. Phys. Rev. Lett. 90, 137901 (2003)CrossRefADSGoogle Scholar
  20. 20.
    F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)CrossRefADSGoogle Scholar
  21. 21.
    B.J. Meers, Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317 (1988)CrossRefADSGoogle Scholar
  22. 22.
    H. Miao, C. Zhao, L. Ju, D.G. Blair, Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions. Phys. Rev. A 79, 063801 (2009)CrossRefADSGoogle Scholar
  23. 23.
    H. Miao, C. Zhao, L. Ju, S. Gras, P. Barriga, Z. Zhang, G. Blair D., Three-mode optoacoustic parametric interactions with a coupled cavity. Phys. Rev. A 78, 063809 (2008)CrossRefADSGoogle Scholar
  24. 24.
    C.M. Mow-Lowry, A.J. Mullavey, S. Gossler, M.B. Gray, D.E. Mc-Clelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801–010804 (2008)CrossRefADSGoogle Scholar
  25. 25.
    G. Mueller, LIGO document: G070441-00-R (2007)Google Scholar
  26. 26.
    H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)CrossRefADSGoogle Scholar
  27. 27.
    A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum backaction. Nature 443, 193–196 (2006)CrossRefADSGoogle Scholar
  28. 28.
    M. Paternostro, D. Vitali, S. Gigan, M.S. Kim, C. Brukner, J. Eisert, M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)CrossRefADSGoogle Scholar
  29. 29.
    A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  30. 30.
    M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201–017204 (2007)CrossRefADSGoogle Scholar
  31. 31.
    M. Rakhmanov, Dynamics of laser interferometric gravitational wave detectors. PhD thesis, California Institute of Technology (2003)Google Scholar
  32. 32.
    D. Reitze, LIGO R & D documents: LIGO-G050360-00-R (2005)Google Scholar
  33. 33.
    S.W. Schediwy, C. Zhao, L. Ju, D.G. Blair, P. Willems, Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitationalwave detectors. Phys. Rev. A 77, 013813–013815 (2008)CrossRefADSGoogle Scholar
  34. 34.
    A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction . Phys. Rev. Lett. 97, 243905-4 (2006)CrossRefADSGoogle Scholar
  35. 35.
    A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)CrossRefGoogle Scholar
  36. 36.
    A. Serafini, Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 96, 110402 (2006)CrossRefADSGoogle Scholar
  37. 37.
    R. Simon, Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000) MarGoogle Scholar
  38. 38.
    J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)CrossRefADSGoogle Scholar
  39. 39.
    G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  40. 40.
    D. Vitali, S. Gigan, A. Ferreira, H.R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)CrossRefADSGoogle Scholar
  41. 41.
    I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)CrossRefADSGoogle Scholar
  42. 42.
    C. Zhao, L. Ju, J. Degallaix, S. Gras, D.G. Blair, Parametric instabilities and their control in advanced interferometer gravitational-wave detectors. Phys. Rev. Lett. 94, 121102 (2005)CrossRefADSGoogle Scholar
  43. 43.
    C. Zhao, L. Ju, Y. Fan, S. Gras, B.J.J. Slagmolen, H. Miao, P. Barriga, D.G. Blair, D.J. Hosken, A.F. Brooks, P.J. Veitch, D. Mudge, J. Munch, Observation of three-mode parametric interactions in long optical cavities. Phys. Rev. A 78, 023807 (2008)CrossRefADSGoogle Scholar
  44. 44.
    C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, D.G. Blair, Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Caltech M350-17Theoretical AstrophysicsPasadenaUSA

Personalised recommendations