Quantum Theory of Gravitational-Wave Detectors

  • Haixing Miao
Part of the Springer Theses book series (Springer Theses)


This chapter gives an overview of the quantum theory of gravitational-wave (GW) detectors. It is a modified version of the chapter contributed to a book in progress—Advanced Gravitational-Wave Detectors—edited by David Blair. This chapter is written by Yanbei Chen, and myself. It gives a detailed introduction on how to analyze the quantum noise in advanced GW detectors by using input–output formalism, which is also valid for general optomechanical devices.


Shot Noise Quantum Noise Test Mass Phase Quadrature Standard Quantum Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.J. Blow, R. Loudon, S.J.D. Phoenix, T.J. Shepherd, Continuum fields in quantum optics. Phys. Rev. A 42, 4102 (1990)CrossRefADSGoogle Scholar
  2. 2.
    V.B. Braginsky, Classical and Quantum Restrictions on the Detection of Weak Disturbances of a Macroscopic Oscillator. JETP 26, 831 (1968)ADSGoogle Scholar
  3. 3.
    V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  4. 4.
    V.B. Braginsky, M.L. Gorodetsky, F.Y. Khalili, Optical bars in gravitational wave antennas. Phys. Lett. A 232, 340 (1997)CrossRefADSGoogle Scholar
  5. 5.
    V.B. Braginsky, M.L. Gorodetsky, F.Y. Khalili, K.S. Thorne, Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization. Phys. Rev. D 61, 044002 (2000)CrossRefADSGoogle Scholar
  6. 6.
    A. Buonanno, Y. Chen, Quantum noise in second generation, signalrecycled laser interferometric gravitational-wave detectors. Phys. Rev. D 64, 042006 (2001)CrossRefADSGoogle Scholar
  7. 7.
    A. Buonanno, Y. Chen, Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys. Rev. D 65, 042001 (2002)CrossRefADSGoogle Scholar
  8. 8.
    A. Buonanno, Y. Chen, Scaling law in signal recycled laserinterferometer gravitational-wave detectors. Phys. Rev. D 67, 062002 (2003)CrossRefADSGoogle Scholar
  9. 9.
    C.M. Caves, B.L. Schumaker, New formalism for two-photon quantum optics. I - Quadrature phases and squeezed states. II - Mathematical foundation and compact notation. Phys. Rev. A 31, 3068 (1985)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C.M. Caves, K.S. Thorne, R.W. Drever, V.D. Sandberg, M. Zimmermann, On the measurement of a weak classical force coupled to a quantummechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341 (1980)CrossRefADSGoogle Scholar
  11. 11.
    Y. Chen, Sagnac interferometer as a speed-meter-type, quantumnondemolition gravitational-wave detector. Phys. Rev. D 67, 122004 (2003)CrossRefADSGoogle Scholar
  12. 12.
    T. Corbitt , Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, An All-Optical Trap for a Gram-Scale Mirror. Phys. Rev. Lett. 98, 150802–150804 (2007)Google Scholar
  13. 13.
    R.W.P. Drever, Gravitational Radiation (North-Holland, Amsterdam, 1983)Google Scholar
  14. 14.
    J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, R. Schnabel, Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors. Phys. Rev. D 68, 042001 (2003)CrossRefADSGoogle Scholar
  15. 15.
    F.Y. Khalili, Y. Levin, Speed meter as a quantum nondemolition measuring device for force. Phys. Rev. D 54, 004735 (1996)CrossRefADSGoogle Scholar
  16. 16.
    H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001)CrossRefADSGoogle Scholar
  17. 17.
    B.J. Meers, Recycling in laser-interferometric gravitational-wave detectors. Phys. Rev. D 38, 2317 (1988)CrossRefADSGoogle Scholar
  18. 18.
    J. Mizuno, Comparison of Optical Configurations for Laser-Interferometric Gravitational-Wave Detectors. PhD thesis, Max-Planck Institut für Quantenoptik, Garching, Germany, 1995Google Scholar
  19. 19.
    J. Mizuno, K.A. Strain, P.G. Nelson, J.M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors. Phys. Lett. A 175, 273 (1993)CrossRefADSGoogle Scholar
  20. 20.
    P. Purdue, Analysis of a quantum nondemolition speed-meter interferometer. Phys. Rev. D 66, 022001 (2002)CrossRefADSGoogle Scholar
  21. 21.
    P. Purdue, Y. Chen, Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys. Rev. D 66, 122004 (2002)CrossRefADSGoogle Scholar
  22. 22.
    H. Rehbein, H. Müller-Ebhardt, K. Somiya, S.L. Danilishin, R. Schnabel, K. Danzmann, Y. Chen, Double optical spring enhancement for gravitational-wave detectors. Phys. Rev. D 78, 062003 (2008)CrossRefADSGoogle Scholar
  23. 23.
    J.Y. Vinet, B. Meers, C. Man, A. Brillet, Optimization of long-baseline optical interferometers for gravitational-wave detection. Phys. Rev. D 38, 433 (1988)CrossRefADSGoogle Scholar
  24. 24.
    S.P. Vyatchanin, A.B. Matsko, Quantum limit on force measurements. JETP 77, 218 (1993)ADSGoogle Scholar
  25. 25.
    S.P. Vyatchanin, E.A. Zubova, Quantum variation measurement of a force. Phys. Lett. A 201, 269–274 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Caltech M350-17Theoretical AstrophysicsPasadenaUSA

Personalised recommendations