Advertisement

Probing Macroscopic Quantum States

  • Haixing Miao
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we consider a subsequent verification stage which probes the prepared macroscopic quantum state, and verifies the quantum dynamics. By adopting an optimal time-dependent homodyne detection method, in which the phase of the local oscillator varies in time, the conditional quantum state can be characterized below the Heisenberg limit, thereby achieving a quantum tomography. In the limiting case of no readout loss, such a scheme evades measurement-induced back-action, which is identical to the variational-type measurement scheme invented by Vyatchanin et al., but in the context for detecting gravitational waves (GWs).

Keywords

Wigner Function Test Mass Classical Noise Verification Accuracy Standard Quantum Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Adesso, F. Illuminati, Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A: Math. Theor. 40(28), 7821 (2007)CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006)CrossRefADSGoogle Scholar
  3. 3.
    A. Barchielli, Stochastic differential equations anda posteriori states in quantum mechanics. Int. J. Theor. Phys. 32, 2221–2233 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    D.G. Blair, E.N. Ivanov, M.E. Tobar, P.J. Turner, van F. Kann, I.S. Heng, High sensitivity gravitational wave antenna with parametric transducer readout. Phys. Rev. Lett. 74, 1908 (1995)CrossRefADSGoogle Scholar
  5. 5.
    K.J. Blow, R. Loudon, S.J.D. Phoenix, T.J. Shepherd, Fields in quantum optics. Phys. Rev. A 42, 4102 (1990)CrossRefADSGoogle Scholar
  6. 6.
    S. Bose, K. Jacobs, P.L. Knight, Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)Google Scholar
  7. 7.
    W.P. Bowen, R. Schnabel, P.K. Lam, T.C. Ralph, Experimental investigation of criteria for continuous variable entanglement. Phys. Rev. Lett. 90, 043601 (2003)CrossRefADSGoogle Scholar
  8. 8.
    V.B. Braginsky, Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator. JETP 26, 831 (1968)ADSGoogle Scholar
  9. 9.
    V.B. Braginsky, F.Y. Khalili, Quantum measurement (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  10. 10.
    C.M. Caves, B.L. Schumaker, New formalism for two-photon quantum optics I - Quadrature phases and squeezed states. II - Mathematical foundation and compact notation. Phys. Rev. A 31, 3068 (1985)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    P.F. Cohadon, A. Heidmann, M. Pinard, Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174 (1999)CrossRefADSGoogle Scholar
  12. 12.
    LIGO Scientific Collaboration, Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11(7), 073032 (2009)Google Scholar
  13. 13.
    T. Corbitt, Y. Chen, E. Innerhofer, H. Mueller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, N. Mavalvala, All-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802–150804 (2007)Google Scholar
  14. 14.
    T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801–160804 (2007)CrossRefADSGoogle Scholar
  15. 15.
    S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, R. Schnabel, K. Danzmann, T. Corbitt, C. Wipf, N. Mavalvala, Y. Chen, Creation of a quantum oscillator by classical control. arXiv:0809.2024, (2008)Google Scholar
  16. 16.
    L. Diosi, Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165 (1989)CrossRefADSGoogle Scholar
  17. 17.
    L. Diosi, Laser linewidth hazard in optomechanical cooling. Phys. Rev. A 78, 021801 (2008)CrossRefADSGoogle Scholar
  18. 18.
    A.C. Doherty, S.M. Tan, A.S. Parkins, D.F. Walls, State determination in continuous measurement. Phys. Rev. A 60, 2380 (1999)CrossRefADSGoogle Scholar
  19. 19.
    I. Favero, C. Metzger, S. Camerer, D. Konig, H. Lorenz, J.P. Kotthaus, K. Karrai, Optical cooling of a micromirror of wavelength size. Appl. Phys. Lett. 90, 104101–104103 (2007)CrossRefADSGoogle Scholar
  20. 20.
    A. Furusawa, J.L. S03rensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282, 706–709 (1998)Google Scholar
  21. 21.
    C. Gardiner, P. Zoller, Quantum noise (Springer-Verlag, Berlin, 2004)zbMATHGoogle Scholar
  22. 22.
    C. Genes, D. Vitali, P. Tombesi, Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity. New J. Phys. 10(9), 095009 (2008)CrossRefADSGoogle Scholar
  23. 23.
    S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006)Google Scholar
  24. 24.
    S. Gröblacher, S. Gigan, H.R. Böhm, A. Zeilinger, M. Aspelmeyer, Radiation-pressure self-cooling of a micromirror in a cryogenic environment. EPL (Europhys. Lett.) 81(5), 54003 (2008)Google Scholar
  25. 25.
    S. Gröblacher, J.B. Hertzberg, M.R. Vanner, G.D. Cole, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold microoptomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485–488 (2009)Google Scholar
  26. 26.
    A. Hopkins, K. Jacobs, S. Habib, K. Schwab, Feedback cooling of a nanomechanical resonator. Phys. Rev. B 68, 235328 (2003)CrossRefADSGoogle Scholar
  27. 27.
    http://www.ligo.caltech.edu.Google Scholar
  28. 28.
    K. Jacobs, P. Lougovski, M. Blencowe, Continuous measurement of the energy eigenstates of a nanomechanical resonator without a nondemolition probe. Phys. Rev. Lett. 98, 147201 (2007)CrossRefADSGoogle Scholar
  29. 29.
    G. Jourdan, F. Comin, J. Chevrier, Mechanical mode dependence of bolometric backaction in an atomic force microscopy microlever. Phys. Rev. Lett. 101, 133904 (2008)CrossRefADSGoogle Scholar
  30. 30.
    I. Katz, A. Retzker, R. Straub, R. Lifshitz, Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 040404 (2007)CrossRefADSGoogle Scholar
  31. 31.
    F. Khalili, S. Danilishin, H. Miao, H. Mueller-Ebhardt, H. Yang, Y. Chen, Preparing a mechanical oscillator in non-Gaussian quantum states. Submitted to PRL (2010)Google Scholar
  32. 32.
    H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev.D 65, 022002 (2001)CrossRefADSGoogle Scholar
  33. 33.
    D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006)CrossRefADSGoogle Scholar
  34. 34.
    A.I. Lvovsky, M.G. Raymer, Continuous-variable optical quantumstate tomography. Rev. Mod. Phys. 81, 299 (2009)CrossRefADSGoogle Scholar
  35. 35.
    S. Mancini, V.I. Man’ko, P. Tombesi, Ponderomotive control of quantum macroscopic coherence. Phys. Rev. A 55, 3042 (1997) AprCrossRefADSGoogle Scholar
  36. 36.
    S. Mancini, D. Vitali, P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback. Phys. Rev. Lett. 80, 688 (1998)CrossRefADSGoogle Scholar
  37. 37.
    F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)CrossRefADSGoogle Scholar
  38. 38.
    C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002–1005 (2004)CrossRefADSGoogle Scholar
  39. 39.
    H. Miao, S. Danilishin, H. Mueller-Ebhardt, H. Rehbein, K. Somiya, Y. Chen, Probing macroscopic quantum states with a sub-Heisenberg accuracy.. Phys. Rev. A 81, 012114 (2010)CrossRefADSGoogle Scholar
  40. 40.
    G.J. Milburn, Classical and quantum conditional statistical dynamics. Quantum and Semiclassical Opt.: J. Eur. Opt. Soc. Part B 8(1), 269 (1996)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    S. Miyoki, T. Uchiyama, K. Yamamoto, H. Hayakawa, K. Kasahara, H. Ishitsuka, M. Ohashi, K. Kuroda, D. Tatsumi, S. Telada, M. Ando, T. Tomaru, T. Suzuki, N. Sato, T. Haruyama, Y. Higashi, Y. Saito, A. Yamamoto, T. Shintomi, A. Araya, S. Takemoto, T. Higashi, H. Momose, J. Akamatsu, W. Morii, Status of the CLIO project. Classical Quantum Gravity 21(5), S1173 (2004)CrossRefADSGoogle Scholar
  42. 42.
    C.M. Mow-Lowry, A.J. Mullavey, S. Gossler, M.B. Gray, D.E. Mc- Clelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801–010804 (2008)CrossRefADSGoogle Scholar
  43. 43.
    H. Mueller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)CrossRefADSGoogle Scholar
  44. 44.
    H. Mueller-Ebhardt, H. Rehbein, C. Li, Y. Mino, K. Somiya, R. Schnabel, K. Danzmann, Y. Chen, Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors. Phys. Rev. A 80, 043802 (2009)CrossRefADSGoogle Scholar
  45. 45.
    A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)CrossRefADSGoogle Scholar
  46. 46.
    B. Noble, Methods based on the Wiener-Hopf technique for the solution of partial differential equations. (AMS Chelsea Publishing, New York, 1988)Google Scholar
  47. 47.
    R. Penrose, On gravity’s role in quantum state reduction. Gen. Relativ. Gravitation 28, 581–600 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  48. 48.
    M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a Cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201–017204 (2007)CrossRefADSGoogle Scholar
  49. 49.
    P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009)CrossRefADSGoogle Scholar
  50. 50.
    S.W. Schediwy, C. Zhao, L. Ju, D.G. Blair, P. Willems, Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitationalwave detectors. Phys. Rev. A 77, 013813–013815 (2008)CrossRefADSGoogle Scholar
  51. 51.
    A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905-4 (2006)CrossRefADSGoogle Scholar
  52. 52.
    A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008)CrossRefGoogle Scholar
  53. 53.
    M.O. Scully, M.S. Zubairy, Quantum optics (Cambridge University Press, Cambridge, 1997)Google Scholar
  54. 54.
    J.D. Teufel, J.W. Harlow, C.A. Regal, K.W. Lehnert, Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203–197204 (2008) NovCrossRefADSGoogle Scholar
  55. 55.
    J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)CrossRefADSGoogle Scholar
  56. 56.
    G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  57. 57.
    S. Vyatchanin, Effective cooling of quantum system. Dokl. Akad. Nauk. SSSR 234, 688 (1977)Google Scholar
  58. 58.
    S.P. Vyatchanin, E.A. Zubova, Quantum variation measurement of a force. Phys. Lett. A 201, 269–274 (1995)CrossRefADSGoogle Scholar
  59. 59.
    D.F. Walls, G. Milburn, Quantum optics (Springer-Verlag, Berlin, 2008)CrossRefzbMATHGoogle Scholar
  60. 60.
    I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)CrossRefADSGoogle Scholar
  61. 61.
    B. Yurke, D. Stoler, Measurement of amplitude probability distributions for photon-number-operator eigenstates. Phys. Rev. A 36, 1955 (1987)CrossRefADSGoogle Scholar
  62. 62.
    C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, D.G. Blair, Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. Phys. Rev. Lett. 102, 243902 (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Caltech M350-17Theoretical AstrophysicsPasadenaUSA

Personalised recommendations