Non-linear Interferometry Beyond the Standard Quantum Limit

  • Christian Groß
Part of the Springer Theses book series (Springer Theses)


In the experiments described in the previous chapter we detected coherent spin squeezed atomic quantum states. However the implementation of a full atom interferometer where the two modes are defined by two mean field wavefunctions in a double well potential is difficult. One of the problems is the limited range in which the system parameter \(\Uplambda\) can be tuned—especially the Rabi regime is not accessible for our setup.


Phase Noise Rabi Frequency Feshbach Resonance Bloch Sphere Technical Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Leggett A (2001) Bose–Einstein condensation in the alkali gases. Some fundamental concepts. Rev Mod Phys 73:307–356CrossRefADSGoogle Scholar
  2. 2.
    Pezzé L, Smerzi A, Berman GP, Bishop AR, Collins LA (2006) Nonlinear beam splitter in Bose–Einstein-condensate interferometers. Phys Rev A 74:033610CrossRefADSGoogle Scholar
  3. 3.
    Gati R (2007) Bose–Einstein condensates in a single double well potential. Ph.D. thesis, University of HeidelbergGoogle Scholar
  4. 4.
    Santarelli G et al (1999) Quantum projection noise in an atomic fountain. A high stability cesium frequency standard. Phys Rev Lett 82:4619–4622CrossRefADSGoogle Scholar
  5. 5.
    Vandersypen LMK, Chuang IL (2005) NMR techniques for quantum control and computation. Rev Mod Phys. 76:1037–1069CrossRefADSGoogle Scholar
  6. 6.
    Sørensen AS, Duan L, Cirac J, Zoller P (2001) Many-particle entanglement with Bose–Einstein condensates. Nature 409:63–6CrossRefADSGoogle Scholar
  7. 7.
    Kaufman AM et al (2009) Radio-frequency dressing of multiple Feshbach resonances. Phys Rev A 80:050701CrossRefADSGoogle Scholar
  8. 8.
    Widera A et al (2004) Entanglement interferometry for precision measurement of atomic scattering properties. Phys Rev Lett 92:160406CrossRefADSGoogle Scholar
  9. 9.
    Erhard M, Schmaljohann H, Kronjäger J, Bongs K, Sengstock K (2004) Measurement of a mixed-spin-channel Feshbach resonance in \(^{87}\)Rb. Phys Rev A 69:032705Google Scholar
  10. 10.
    Steel M, Collett M (1998) Quantum state of two trapped Bose–Einstein condensates with a Josephson coupling. Phys Rev A 57:2920–2930CrossRefADSGoogle Scholar
  11. 11.
    Sinatra A, Castin Y (2000) Binary mixtures of Bose–Einstein condensates. Phase dynamics and spatial dynamics. Eur Phys J D 8:319CrossRefADSGoogle Scholar
  12. 12.
    Li Y, Treutlein P, Reichel J, Sinatra A (2009) Spin squeezing in a bimodal condensate. spatial dynamics and particle losses. Eur Phys J B 68:365–381CrossRefADSGoogle Scholar
  13. 13.
    Poulsen UV, Mølmer K (2001) Positive-P simulations of spin squeezing in a two-component Bose condensate. Phys Rev A 64:013616CrossRefADSGoogle Scholar
  14. 14.
    Hall DS, Matthews MR, Wieman CE, Cornell EA (1998) Measurements of relative phase in two-component Bose–Einstein condensates. Phys Rev Lett 81:1543–1546CrossRefADSGoogle Scholar
  15. 15.
    Matthews MR et al (1998) Dynamical response of a Bose–Einstein condensate to a discontinuous change in internal state. Phys Rev Lett 81:243–247CrossRefADSGoogle Scholar
  16. 16.
    Treutlein P, Hommelhoff P, Steinmetz T, Hänsch TW, Reichel J (2004) Coherence in microchip traps. Phys Rev Lett 92:203005CrossRefADSGoogle Scholar
  17. 17.
    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1992) Atom-photon interactions: basic processes and applications. Wiley, New YorkGoogle Scholar
  18. 18.
    Milburn G, Corney J, Wright E, Walls D (1997) Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential. Phys Rev A 55:4318–4324CrossRefADSGoogle Scholar
  19. 19.
    Javanainen J, Ivanov M (1999) Splitting a trap containing a Bose–Einstein condensate. Atom number fluctuations. Phys Rev A 60:2351–2359CrossRefADSGoogle Scholar
  20. 20.
    Bohi P et al (2009) Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip. Nat Phys 5:592–597CrossRefGoogle Scholar
  21. 21.
    Chin C, Grimm R, Julienne P, Tiesinga E (2010) Feshbach resonances in ultracold gases. Rev Mod Phys 82:1225CrossRefADSGoogle Scholar
  22. 22.
    Hall DS, Matthews MR, Ensher JR, Wieman CE, Cornell EA (1998) Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys Rev Lett 81:1539–1542CrossRefADSGoogle Scholar
  23. 23.
    Timmermans E (1998) Phase separation of Bose–Einstein condensates. Phys Rev Lett 81:5718–5721CrossRefADSGoogle Scholar
  24. 24.
    Li Y, Castin Y, Sinatra A (2008) Optimum spin squeezing in Bose–Einstein condensates with particle losses. Phys Rev Lett 100:210401CrossRefADSGoogle Scholar
  25. 25.
    Raghavan S, Smerzi A, Fantoni S, Shenoy SR (1999) Coherent oscillations between two weakly coupled Bose–Einstein condensates. Josephson effects, \(\pi\) oscillations, and macroscopic quantum self-trapping. Phys Rev A 59:620–633Google Scholar
  26. 26.
    Widera A et al (2005) Coherent collisional spin dynamics in optical lattices. Phys Rev Lett 95:190405CrossRefADSGoogle Scholar
  27. 27.
    Kitagawa M, Ueda M (1993) Squeezed spin states. Phys Rev A 47:5138–5143CrossRefADSGoogle Scholar
  28. 28.
    Bachor HA, Ralph TC (2004) A guide to experiments in quantum optics. Wiley, New YorkCrossRefGoogle Scholar
  29. 29.
    Sinatra A, Castin Y (1998) Phase dynamics of Bose–Einstein condensates. Losses versus revivals. Eur Phys J D 4:247–260CrossRefADSGoogle Scholar
  30. 30.
    Wright EM, Walls DF, Garrison JC (1996) Collapses and revivals of Bose–Einstein condensates formed in small atomic samples. Phys Rev Lett 77:2158–2161CrossRefADSGoogle Scholar
  31. 31.
    Yurke B, Stoler D (1986) Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys Rev Lett 57:13–16CrossRefADSGoogle Scholar
  32. 32.
    Greiner M, Mandel O, Hänsch TW, Bloch I (2002) Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419:51–54CrossRefADSGoogle Scholar
  33. 33.
    Ferrini G, Minguzzi A, Hekking FWJ (2008) Number squeezing quantum fluctuations and oscillations in mesoscopic Bose Josephson junctions. Phys Rev (A) 78:023606CrossRefADSGoogle Scholar
  34. 34.
    Pezzé L, Smerzi A (2009) Entanglement nonlinear dynamics and the Heisenberg limit. Phys Rev Lett 102:100401MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Pezzé L, Collins LA, Smerzi A, Berman GP, Bishop AR (2005) Sub-shot-noise phase sensitivity with a Bose–Einstein condensate Mach-Zehnder interferometer. Phys Rev (A) 72:043612CrossRefADSGoogle Scholar
  36. 36.
    Appel J et al (2009) Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc Natl Acad Sci U S A. 106:10960–10965CrossRefADSGoogle Scholar
  37. 37.
    Fernholz T (2008) Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. Phys Rev Lett 101:073601CrossRefADSGoogle Scholar
  38. 38.
    Ramsey NF (1950) A molecular beam resonance method with separated oscillating fields. Phys Rev 78:695–699CrossRefADSGoogle Scholar
  39. 39.
    Ramsey NF (1949) A new molecular beam resonance method. Phys Rev 76:996CrossRefADSGoogle Scholar
  40. 40.
    Albiez M (2005) Observation of nonlinear tunneling of a Bose–Einstein condensate in a single Josephson junction. Ph.D. thesis, University of HeidelbergGoogle Scholar
  41. 41.
    Metcalf H, Vander Straten P (1999) Laser cooling and trapping. Springer, New YorkCrossRefGoogle Scholar
  42. 42.
    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler MK (2010) Nonlinear atom interferometer surpasses classical precision limit. Nature 464:1165–1169CrossRefADSGoogle Scholar
  43. 43.
    Wineland D, Bollinger J, Itano W, Heinzen D (1994) Squeezed atomic states and projection noise in spectroscopy. Phys Rev A 50:67–88CrossRefADSGoogle Scholar
  44. 44.
    Sørensen AS, Mølmer K (2001) Entanglement and extreme spin squeezing. Phys Rev Lett 86:4431–4434CrossRefADSGoogle Scholar
  45. 45.
    Viola L, Lloyd S (1998) Dynamical suppression of decoherence in two-state quantum systems. Phys Rev (A) 58:2733–2744MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    Ferrini G, Spehner D, Minguzzi A, Hekking FWJ (2010) Anomalous decoherence rate of macroscopic superpositions in Bose Josephson junctions. Phys Rev A 82:033621CrossRefADSGoogle Scholar
  47. 47.
    Search CP, Meystre P (2003) Noise limits in matter-wave interferometry using degenerate quantum gases. Phys Rev (A) 67:061601CrossRefADSGoogle Scholar
  48. 48.
    Scully MO, Dowling JP (1993) Quantum-noise limits to matter-wave interferometry. Phys Rev (A) 48:3186–3190CrossRefADSGoogle Scholar
  49. 49.
    Cronin AD, Schmiedmayer J, Pritchard DE (2009) Optics and interferometry with atoms and molecules. Rev Mod Phys 81:1051CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Christian Groß
    • 1
  1. 1.University of HeidelbergHeidelbergGermany

Personalised recommendations