Skip to main content

Bleaching and Oxidation of Human Hair

  • Chapter
  • First Online:
Chemical and Physical Behavior of Human Hair

Abstract

The physical chemistry of both chemical bleaching and sunlight effects on human hair are described. Recently we have become more aware of the critical involvement of free radical chemistry on both chemical and sunlight oxidative processes for human hair, therefore these effects are included. The beta layers of the cortical lipids with their high density of double bonds with allylic hydrogen atoms are very sensitive to free radical propagation reactions which can degrade the lipids themselves and also lead to protein degradation. Over the past decade our understanding of the biosynthesis and the structures of the melanin pigments has improved greatly; the most current biosynthetic pathway has been added to this Chapter. Initial oxidation reactions remove 18-MEA and free lipids from the surface and between cuticle cells. When metals like iron or copper are present free radical chemistry is increased leading to degradation of lipids and enhanced protein degradation not only at disulfide bonds but even at peptide bonds. Oxidative cleavage of disulfide bonds inside cuticle cells also occurs. Degradation of disulfide bonds inside cortical cells occurs next as well as degradation of hair pigments. Other amino acid functional groups are attacked and oxidatively degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zahn H (1966) Chemische vorgange beim bleichen von wolle und menschenhaar mit wasserstoffperoxid und peroxysauren. J Soc Cosmet Chem 17:687–701

    CAS  Google Scholar 

  2. Zahn H et al (1984) 4th international hair science symposium, Syburg, Nov 1984

    Google Scholar 

  3. Robbins C (1967) Infrared analysis of oxidized keratins. Textile Res J 37:811–813

    CAS  Google Scholar 

  4. Nachtigal J, Robbins C (1970) Intermediate oxidation products of cystine in oxidized hair. Textile Res J 40:454–457

    CAS  Google Scholar 

  5. Robbins C, Kelly C (1969) Amino acid analysis of cosmetically altered hair. J Soc Cosmet Chem 20:555–564

    CAS  Google Scholar 

  6. Robbins C, Bahl M (1984) Analysis of hair by electron spectroscopy for chemical analysis. J Soc Cosmet Chem 35:379–390

    CAS  Google Scholar 

  7. Maclaren JA, Leach SJ, Swan JM (1960) A study of some problems in protein chemistry using new (non-hydrolytic) methods for the determination of thiol and disulfide. J Textile Inst 51:T665–T667

    Google Scholar 

  8. Maclaren JA, Savage WE, Sweetman BJ (1965) Disulfide monoxide groups in oxidized keratin. Aust J Chem 18:1655–1665

    CAS  Google Scholar 

  9. Alter H, Bit-Alkis M (1969) Infrared analysis of oxidized keratins. Textile Res J 39:479–481

    CAS  Google Scholar 

  10. Prota G, (1992) Melanins and Melanogenesis. Academic Press, New York, NY. pp 1–290

    Google Scholar 

  11. Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice and other animals: a comparative review, Pigment Cell Res. 16:523–531

    PubMed  Google Scholar 

  12. Wolfram LJ (1970) The mechanism of hair bleaching. J Soc Cosmet Chem 21:875–900

    CAS  Google Scholar 

  13. Flesch P (1968) Chemical studies of the iron pigments of red hair and feathers. J Soc Cosmet Chem 19:675–681

    CAS  Google Scholar 

  14. Prota G, Schevillo G, Nicolaus RA (1968) On the structure of trichosiderins. Rend Acad Sci Fis Mat (Naples) 35:1–4

    Google Scholar 

  15. Cook M (1966) Modern hair bleaches. Drug Cosmet Indust 99, 47,154

    Google Scholar 

  16. Wall FE (1957) Bleaches, hair colorings and dye precursors, In: Sagarin E (ed) Cosmetics: science and technology. Interscience, New York, pp 479–530

    Google Scholar 

  17. Ruetsch SB, Kamath YK (2004) Change in surface chemistry of the cuticle of human hair by chemical and photochemical oxidation. IFSCC Mag 7(4):299–307

    Google Scholar 

  18. Dubief C (1992) Experiments with hair photodegradation. Cosmet Toiletries 107:95–102

    CAS  Google Scholar 

  19. Beard BC et al (2005) Electron spectroscopy and microscopy applied to chemical and structural analysis of hair. J Cosmet Sci 56:65–77

    PubMed  CAS  Google Scholar 

  20. Harris M, Brown AE (1946) Symposium on fibrous proteins. J Soc Dyers Col, 62:203–206

    Google Scholar 

  21. Alexander P, Hudson RF, Earland C (1963) Wool, its chemistry and physics, 2nd edn. Franklin Publishing Co., New Jersey, p 63, 289

    Google Scholar 

  22. Edman W, Marti M (1961) Properties of peroxide bleached hair. J Soc Cosmet Chem 12:133–145

    Google Scholar 

  23. Crank J (1967) The mathematics of diffusion. Clarendon Press, Oxford, p 71

    Google Scholar 

  24. Robbins CR (1971) Chemical aspects of bleaching human hair. J Soc Cosmet Chem 22:339–348

    CAS  Google Scholar 

  25. Savige WE, Maclaren JA (1966) Oxidation of disulfides with special reference to cystine, In: Kharasch N, Meyers FJ (eds) The chemistry of organic sulfur compounds, vol 2. Pergamon Press, New York, pp 367–402

    Google Scholar 

  26. Lavine TF (1936) The oxidation of cystine in non-aqueous media. IV: a study of the reactions of the disulfoxide of L-cystine especially of its dismutative decompositions. J Biol Chem 113:583–597

    CAS  Google Scholar 

  27. Savige WE et al (1964) The S-monoxides of cystine, cystamine and homocystine. Tetrahedron Lett 44:3289–3293

    Google Scholar 

  28. Truce WE, Murphy AM (1951) The preparation of sulfinic acids. Chem Rev 48:69–124

    CAS  Google Scholar 

  29. Kharasch N (1961) Sulfenium ions and sulfenyl compounds, In: Kharasch N (ed) Organic sulfur compounds, vol 1. Pergamon Press, New York, p 375

    Google Scholar 

  30. Marsh J et al (2007) Investigations of cosmetic treatments on high pressure differential scanning calorimetry. J Cosmet Chem 58:319–327

    CAS  Google Scholar 

  31. Signori V (2004) Review of the current understanding of the effect of ultraviolet and visible radiation on hair structure and options for photoprotection. J Cosmet Sci 55:95–113

    PubMed  Google Scholar 

  32. Mercer EH (1965) The contribution of the resistant cell membranes to the properties of keratinized tissues. J Soc Cosmet Chem 16:507–514

    CAS  Google Scholar 

  33. Natarajan U, Robbins C (2010) The thickness of the lipid layer at the surface of keratin fibers. J Cosmet Sci 61(6):467–477

    PubMed  Google Scholar 

  34. Capablanca JS, Watt IC (1986) Factors affecting the zeta potential at wool fiber surfaces. Textile Res J 56:49–55

    CAS  Google Scholar 

  35. Marshall RC, Ley KF (1986) Examination of proteins from wool cuticle by two dimensional gel electrophoresis. Textile Res J 56:772–774

    CAS  Google Scholar 

  36. Gould JG, Sneath RL (1985) Electron microscopy image analysis: quantification of ultrastructural changes in hair fiber cross sections as a result of cosmetic treatment. J Soc Cosmet Chem 36:53–59

    Google Scholar 

  37. Negri AP et al (1996) A transmission electron microscope study of covalently bound fatty acids in the cell membranes of wool fibers. Textile Res J 66:491–495

    CAS  Google Scholar 

  38. Gamez-Garcia M (1998) Cuticle decementation and cuticle buckling produced by Poisson contraction on the cuticular envelope of human hair. J Cosmet Sci 49:213–222

    Google Scholar 

  39. Feughelman M, Willis BK (2001) Mechanical extension of human hair and the movement of the cuticle. J Cosmet Sci 52:185–193

    PubMed  CAS  Google Scholar 

  40. Ruetsch S, Yang B, Kamath YK (2008) Cuticular damage to African-American hair during relaxer treatments – a microfluorometric and SEM study. IFSC Mag 11(2):131–138

    CAS  Google Scholar 

  41. Robbins C (2002) Chemical and physical behavior of human hair, 4th edn. Springer-Verlag, New York, pp 116–118

    Google Scholar 

  42. Robbins C et al (2004) Failure of intercellular adhesion in hair fibers with regard to hair condition and strain conditions. J Cosmet Sci 55:351–371

    PubMed  CAS  Google Scholar 

  43. Kamath YK, Weigmann HD (1982) Fractography of human hair. J Appl Polym Sci 27:3809–3833

    Google Scholar 

  44. Robbins C (2006) Hair breakage during combing. II: impact loading and hair breakage. J Cosmet Sci 57:245–257

    PubMed  Google Scholar 

  45. Sandhu S, Robbins C (1993) A simple and sensitive technique based on protein loss measurements to assess surface damage to human hair. J Soc Cosmet Chem 44:163–175

    CAS  Google Scholar 

  46. Inoue T et al (2002) Labile proteins accumulated in damaged hair upon permanent waving and bleaching treatments. J Cosmet Sci 53:337–344

    PubMed  CAS  Google Scholar 

  47. Ruetsch S (2002) Chemical and physical behavior of human hair, 4th edn. Springer-Verlag, New York, pp 409–410

    Google Scholar 

  48. Takahashi T et al (2006) Morphology and properties of Asian and Caucasian hair. J Cosmet Sci 57:327–338

    PubMed  CAS  Google Scholar 

  49. Nakamura Y et al (1975) Electrokinetic studies on the surface structure of wool fibers. In: Proceedings of 5th IWTRC, vol 5. Aachen, pp 34–43

    Google Scholar 

  50. Hoting E, Zimmermann M (1997) Sunlight induced modifications in bleached, permed or dyed human hair. J Soc Cosmet Chem 48:79–92

    Google Scholar 

  51. Korner A et al (1995) Changes in the content of 18-methyleicosanoic acid in wool after UV-irradiation and corona treatment. In: Proceedings of the 9th IWTRC, Aachen, pp 414–419

    Google Scholar 

  52. Zimmermann M, Hocker H (1996) Typical fracture appearance of broken wool fibers after simulated sunlight irradiation. Textile Res J 66:657–660

    CAS  Google Scholar 

  53. Dean DT et al (1997) Biochemistry and pathology of radical mediated protein oxidation. Biochem J 324:1–18

    PubMed  CAS  Google Scholar 

  54. Goshe MB, Chen YH, Anderson VE (2000) Identification of the sites of hydroxyl radical reaction with peptides by hydrogen-deuterium exchange: prevalence of reaction with side chains. Biochemistry 39:1761–1770

    PubMed  CAS  Google Scholar 

  55. Holt LA, Milligan B (1977) The formation of carbonyl groups during irradiation of wool and its relevance to photoyellowing. Textile Res J 47:620–624

    CAS  Google Scholar 

  56. Meybeck A, Meybeck J (1967) The photo-oxidation of the peptide group. I: fibrous proteins. Photochem Photobiol 6:355–363

    CAS  Google Scholar 

  57. Beyak R et al (1971) Elasticity and tensile properties of human hair. II: Light radiation effects. J Soc Cosmet Chem 22:667–678

    Google Scholar 

  58. Arnaud J et al (1984) ESR study of hair and melanin-keratin mixtures-the effects of temperature and light. Int J Cosmet Sci 6:71–83

    PubMed  CAS  Google Scholar 

  59. Reagan BM (1982) Eradication of insects from wool textiles. J Am Inst Conserv 21(2):1–34

    Google Scholar 

  60. Launer HF (1965) Effect of light upon wool. Part IV: Bleaching and yellowing by sunlight 1. Textile Res J 35:395–400

    CAS  Google Scholar 

  61. Inglis AS, Lennox FG (1963) Wool yellowing. IV: Changes in amino acid composition due to irradiation. Textile Res J 33:431–435

    CAS  Google Scholar 

  62. Pande CM, Jachowicz J (1993) Hair photo-damage-measurement and prevention. J Soc Cosmet Chem 44:109–122

    Google Scholar 

  63. Robbins CR, Kelly CH (1970) Amino acid composition of human hair. Textile Res J 40:891–896

    CAS  Google Scholar 

  64. Tolgyesi E (1983) Weathering of hair. Cosmet Toiletries 98:29–33

    Google Scholar 

  65. Ratnapandian S, Warner SB, Kamath YK (1998) Photodegradation of human hair. J Cosmet Sci 49:309–320

    Google Scholar 

  66. Kirschenbaum LJ et al (2000) Oxygen radicals from photoirradiated human hair. J Cosmet Sci 51:169–182

    Google Scholar 

  67. Millington KR (2006) Photoyellowing of wool. Part 2: Photoyellowing mechanisms and methods of prevention. Color Technol 122:301–316

    CAS  Google Scholar 

  68. Qu X et al (2000) Hydroxyterephthalate as a fluorescent probe for hydroxyl radicals: application to hair melanin. Photochem Photobiol 71:307–313

    PubMed  CAS  Google Scholar 

  69. Haywood RM et al (2006) Synthetic melanin is a model for soluble natural melanin in UVA-photosensitized superoxide formation. Photochem Photobiol 82:224–235

    CAS  Google Scholar 

  70. Bringens SD et al (2006) Kynurenine located within keratin proteins isolated from photoyellowed wool fabric. Textile Res J 76:288–294

    Google Scholar 

  71. Bruskov VI et al (2002) Heat induced generation of reactive oxygen species in water. Doklady Biochem Biophys 384:181–184 (translated from Doklady Academii Nauk 384(6):821–824 (2002))

    Google Scholar 

  72. Misra HP (1974) Generation of superoxide free radical during autoxidation of thiols. J Biol Chem 249:2151–2155

    PubMed  CAS  Google Scholar 

  73. Chase HB (1958) The behavior of pigment cells and epithelial cells in the hair follicle, In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic Press, New York, 233

    Google Scholar 

  74. Millington KR, Church JS (1997) The photodegradation of wool keratin. II: Proposed mechanisms involving cystine. Photochem Photobiol 39:204–212

    CAS  Google Scholar 

  75. Androes GM et al (1972) Concerning the production of free radicals in proteins by ultraviolet light. Photochem Photobiol 15:375–393

    PubMed  CAS  Google Scholar 

  76. Maletin YA et al (1988) Kinetics and mechanism of oxidation of copper (I) ions with thiuram disulfide. Inst Gen Inorgan Chem Acad Sci Ukranian SSR, Kiev (translated from Teoreticheskaya I. Eksperimental’naya Khimiya) 24(4):450–455

    Google Scholar 

  77. Murray RW, Jindal SL (1972) The photosensitized oxidation of disulfides related to cystine. Photochem Photobiol 16:147–151

    CAS  Google Scholar 

  78. Schmidt R (1989) Influence of heavy atoms on the deactivation of singlet oxygen in solution. J Am Chem Soc 111:6983–6987

    CAS  Google Scholar 

  79. Bonifacic M et al (1975) Primary steps in the reactions of disulfides with hydroxyl radicals in aqueous solution. J Phys Chem 79(15):1496–1502

    CAS  Google Scholar 

  80. Smith GJ et al (1979) The action spectra of free radicals produced by the irradiation of keratin containing bound iron (III) ions. Photochem Photobiol 29:777–779

    PubMed  CAS  Google Scholar 

  81. Tarbell BS (1961) The mechanism of oxidation of thiols to disulfides, In: Kharasch N (ed) Organic sulfur compounds, vol 1. Pergamon Press, New York, p 97

    Google Scholar 

  82. Takahashi M et al (1998) Photochemical transformation of S-aryl 2 benzoylbenzothioates to 3-phenyl-3-arylthiobenzofuranones involving aryl migration. J Chem Soc Perkin Trans 2:487–492

    Google Scholar 

  83. Chatgiliologlu C et al (1999) Chemistry of acyl radicals. Chem Rev 99(8):1991–2070

    Google Scholar 

  84. Brown CE et al (1995) Kinetic and spectroscopic studies on acyl radicals in solution by time-resolved infrared spectroscopy. Aust J Chem 48(2):363–379

    CAS  Google Scholar 

  85. Domingues RM et al (2003) Identification of oxidation products and free radicals of tryptophan by mass spectrometry. J Am Soc Mass Spectr 14:406–416

    CAS  Google Scholar 

  86. Ege S (1994) Organic chemistry: structure and reactivity, 3rd edn. D.C. Heath and Company, Lexington, pp 890–892

    Google Scholar 

  87. Von Allworden K (1916) Die eigenschaften der schafwolle und eine neue untersuchungs methode zum nachweis geschadigter wolle auf chemischem wege. Z Angew Chem 29:77–78

    Google Scholar 

  88. Fair N, Gupta BS (1982) Effects of chlorine on friction and morphology of human hair. J Soc Cosmet Chem 33:229–242

    CAS  Google Scholar 

  89. Makinson KR (1974) The role of chlorine in oxidative antifelting treatments of wool. Textile Res J 44:856–857

    CAS  Google Scholar 

  90. Birbeck M, Mercer EH (1956) Electron microscopy. In: Proceedings of Stockholm conference, Stockholm, Sweden, p 158

    Google Scholar 

  91. Barnicot NA, Birbeck MSC, Cuckow FW (1955) The electron microscopy of human hair pigments. Ann Hum Genet 19:231–249

    Google Scholar 

  92. Tobin DJ, Paus R (2001) Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol 36:29–54

    PubMed  CAS  Google Scholar 

  93. Menkart J, Wolfram LJ, Mao I (1966) Caucasian hair, Negro hair and wool: similarities and differences. J Soc Cosmet Chem 17:769–788

    CAS  Google Scholar 

  94. Schwan-Jonczyk A (1999) Hair structure, 1st edn. Wella AG, Darmstadt, pp 39–49, Printed by Dr. J. Hoerning GmbH, Heidelberg, Germany (1999)

    Google Scholar 

  95. Swift JA (1963) Fundamentals of human hair science. Ph.D. thesis, Leeds University

    Google Scholar 

  96. Barnicot NA, Birbeck M (1958) The electron microscopy of human melanocytes and melanin granules, In: Montagna W, Ellis RA (eds) The biology of hair growth, ch 12. Academic, New York, 241

    Google Scholar 

  97. Fitzpatrick TB et al (1958) The nature of hair pigment. In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic, New York, p 287

    Google Scholar 

  98. Robbins C (2002) Chemical and physical behavior of human hair, ch 4, 4th edn. Springer-Verlag, Berlin

    Google Scholar 

  99. Keis K, Ramaprasad KR, Kamath YK (2004) Studies of light scattering from ethnic hair fibers. J Cosmet Sci 55:49–63

    PubMed  CAS  Google Scholar 

  100. Pecoraro V, Astore I, Barman JM (1964) Cycle of the scalp hair of the new born child. J Invest Dermatol 43:145–147

    PubMed  CAS  Google Scholar 

  101. Trotter M, Dawson HL (1934) The hair of French Canadians. Am J Phys Anthropol 18:443–456

    Google Scholar 

  102. Trotter M (1930) The form, size and color of head hair in American whites. Am J Phys Anthropol 14:433–445

    Google Scholar 

  103. Bogaty H (1969) Differences between adult and children’s hair. J Soc Cosmet Chem 20:159–171

    Google Scholar 

  104. Hollfelder B et al (1995) Chemical and physical properties of pigmented and non-pigmented hair (gray hair). Int J Cosmet Sci 17:87–89

    PubMed  CAS  Google Scholar 

  105. Yin NE et al (1977) The effect of fiber diameter on the cosmetic aspects of hair. J Soc Cosmet Chem 28:139–150

    Google Scholar 

  106. Van Neste D (2004) Thickness, medullation and growth rate of female scalp hair are subject to significant variation according to pigmentation and scalp location during ageing. Eur J Dermatol 14:28–32

    PubMed  Google Scholar 

  107. Gao T, Bedell A (2001) Ultraviolet damage on natural gray hair and its photoprotection. J Cosmet Sci 52:103–118

    PubMed  CAS  Google Scholar 

  108. Nagase S et al (2002) Influence of internal structures of hair fiber on hair appearance. I: Light scattering from the porous structure of the medulla of human hair. J Cosmet Sci 53:89–100

    PubMed  Google Scholar 

  109. Laxer G, Whewell CS (1954) Iron content of melanin granules isolated from pigmented mammalian hairs. Chem Indust (Lond) 5:127

    Google Scholar 

  110. Serra JA (1946) Constitution of hair melanins. Nature 157:771

    PubMed  CAS  Google Scholar 

  111. Laxer G, Sikorski J, Whewell CS (1954) The electron microscopy of melanin granules isolated from pigmented mammalian fibers. Biochim Biophys Acta 15:174–185

    PubMed  CAS  Google Scholar 

  112. Laxer G (1955) Some properties of pigmented animal fibers with special reference to bleaching. Ph.D. thesis, University of Leeds

    Google Scholar 

  113. Schmidli B (1955) Uber melanine die dunklen haut und haarpigmente. Helv Chem Acta 38:1078–1084

    CAS  Google Scholar 

  114. Schmidli B, Robert P (1954) Pigmentstudien. VI: Mitteilung physikalische und chemische untersuchungen an naturlichem melanin. Dermatologica 108:343–351

    PubMed  CAS  Google Scholar 

  115. Gjesdal F (1959) Investigations on the melanin granules with special consideration of the hair pigment. Acta Pathol Microbiol 47(Suppl 133):1–112

    Google Scholar 

  116. Breuer MM, Jenkins AD (1965) Proceedings of 3rd international wool textile research conference, vol II. Paris, p 346

    Google Scholar 

  117. Raposo G et al (2001) Distinct protein sorting and localization to premelanosomes, melanosomes and lysosomes in pigmented melanocytic cells. J Cell Biol 152:809–824

    PubMed  CAS  Google Scholar 

  118. Yasumoto K, Hearing VJ et al (2004) Epitope mapping of the melanosomal matrix protein gp100 (PMEL17). J Biol Chem 279:28330–28338

    PubMed  CAS  Google Scholar 

  119. Donatien PD, Orlow SJ (1995) Interaction of melanosomal proteins with melanin. Eur J Biochem 232:159–164

    PubMed  CAS  Google Scholar 

  120. Orlow SJ, Osber MP, Pawelek JM (1992) Synthesis and characterization of melanins from dihydroxyindole-2-carboxylic acid and dihydroxyindole. Pigment Cell Res 5:113–121

    PubMed  CAS  Google Scholar 

  121. Kita T et al (1990) Image analytic studies of melanin granules of human hairs with transmission electron micrographs. J UOEH 12(3):335–341

    PubMed  CAS  Google Scholar 

  122. Kita T et al (1991) Determining aging changes of melanin granules of human scalp hairs by image analyser. Nihon Hoigaku Zasshi 45(1):44–51

    PubMed  CAS  Google Scholar 

  123. Nicolaus RA (1966) On the biogenesis of pheomelanins, In: Montagna W, Hu F (eds) Advances in biology of skin: the pigmentary system, vol 8. Pergamon Press, New York, pp 323–328

    Google Scholar 

  124. Prota G (1980) Recent advances in the chemistry of melanogenesis in mammals. J Invest Dermatol 75:122–127

    PubMed  CAS  Google Scholar 

  125. Piatelli M, Nicolaus RA et al (1963) The structure of melanins and melanogenesis III: The structure of sepiomelanin. Tetrahedron 19:2061–2072

    Google Scholar 

  126. Ito S (2003) A chemist’s view of melanogenesis. Pigment Cell Res 16:230–236

    PubMed  CAS  Google Scholar 

  127. Borges CR et al (2001) Relationship of melanin degradation products to actual melanin content: application to human hair. Anal Biochem 290:116–125

    PubMed  CAS  Google Scholar 

  128. Ito S, Wakamatsu K (2006) The physical properties of melanins, In: Norlund JL et al (eds) The pigmentary system: physiology and pathophysiology, 2nd edn. Blackwell Publishing Ltd., MA

    Google Scholar 

  129. Napolitano A et al (2000) Microanalysis of melanins in mammalian hair by alkaline hydrogen peroxide degradation: identification of a new structural marker of pheomelanins. J Invest Dermatol 114:1141–1147

    PubMed  CAS  Google Scholar 

  130. Wakamatsu K, Ito S, Rees JL (2002) The usefulness of 4-amino-3-hydroxyphenylalanine as a specific marker of pheomelanin. Pigment Cell Res 15:225–232

    PubMed  CAS  Google Scholar 

  131. Ito S, Wakamatsu K (2008) Chemistry of mixed melanogenesis-pivotal roles of dopaquinone. Photochem Photobiol 84:582–592

    PubMed  CAS  Google Scholar 

  132. Napolitano A et al (2008) The “benzothiazine” chromophore of pheomelanins: a reassessment. Photochem Photobiol 84:593–599

    PubMed  CAS  Google Scholar 

  133. Chintala S et al (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cell. Proc Natl Acad Sci USA 102:10964–10969

    PubMed  CAS  Google Scholar 

  134. Thody AJ et al (1991) Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol 97:340–344

    PubMed  CAS  Google Scholar 

  135. Fuller BB (2001) Regulation of the catalytic activity of preexisting tyrosinase in Black and Caucasian human melanocytes cell cultures. Exp Cell Res 262:197–208

    PubMed  CAS  Google Scholar 

  136. Smith DR et al (2004) The relationship between Na+/H + exchanger expression and tyrosinase activity in human melanocytes. Exp Cell Res 298:521

    PubMed  CAS  Google Scholar 

  137. Ancans J, Tobin TJ et al (2001) Melanosomal pH controls rate of melanogenesis, eumelanin/pheomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268:26

    PubMed  CAS  Google Scholar 

  138. Cheli Y (2009) α-MSH and cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J Biol Chem 284:18699

    PubMed  CAS  Google Scholar 

  139. Mason HS (1966) The Structure of Melanin, In: Montagna W, Wu Y (eds) Advances in biology of skin: the pigmentary system, vol 8. Pergamon Press, New York, pp 293–312

    Google Scholar 

  140. Nicolaus RA (1966) Comments on Howard S Mason's Paper, The Structure of Melanin, In: Montagna W, Wu Y (eds) Advances in biology of skin: the pigmentary system, vol 8. Pergamon Press, New York, pp 313–328

    Google Scholar 

  141. Napolitano A et al (1996) Structural analysis of synthetic melanins from 5,6-dihydroxyindole by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 10:468–472

    CAS  Google Scholar 

  142. Ito S, Simon JD (2004) Reply. Pigment Cell Res 17:423–424

    Google Scholar 

  143. Kaxiras E et al (2006) Structural model of eumelanin. Phys Rev Lett 97:218102-1–218102-4

    Google Scholar 

  144. Arzillo M, Napolitano A et al (2010) Cyclic structural motifs in 5,6-dihydroxyindole polymerization uncovered: biomimetic modular buildup of a unique five-membered macrocycle. Org Lett 12:3250–3253

    PubMed  CAS  Google Scholar 

  145. Rees JL (2004) The genetics of sun sensitivity in humans. Am J Hum Genet 75:739–751

    PubMed  CAS  Google Scholar 

  146. Panzella L, Napolitano A et al (2006) An easy-to-run method for routine analysis of eumelanin and pheomelanin in pigmented tissues. Pigment Cell Res 20:128–133

    Google Scholar 

  147. Wolfram LJ, Hall K (1975) Isolation and identification of the protein component of hair melanin. J Soc Cosmet Chem 26:247–254

    Google Scholar 

  148. Martin F, Gonzalez-Vila J, Martin JP (1983) The persulfate oxidation of fungal melanins 1. Soil Sci Soc Am J 47(6):1145–1148

    CAS  Google Scholar 

  149. Wolfram LJ, Albrecht L (1987) Chemical and photo- bleaching of brown and red hair. J Soc Cosmet Chem 38:179–192

    CAS  Google Scholar 

  150. Arakindakshan Menon I et al (1983) A comparative study of the physical and chemical properties of melanins isolated from human black and red hair. J Invest Dermatol 80:202–206

    Google Scholar 

  151. Takahashi T, Nakamura K (2005) A study of the photo-lightening mechanism of red hair with visible and ultraviolet light: comparison with blond hair. J Cosmet Sci 56:47–56

    PubMed  CAS  Google Scholar 

  152. Hoting E, Zimmermann M, Hocker H (1995) Photochemical alterations in human hair. Part II: analysis of melanin. J Soc Cosmet Chem 46:181–190

    CAS  Google Scholar 

  153. Slawinska D, Slawinski J (1982) Electronically excited molecules in the formation and degradation of melanins. Physiol Chem Phys 14:363–374

    PubMed  CAS  Google Scholar 

  154. Sarna T et al (1984) Photoinduced oxygen consumption in melanin systems-II: action spectra and quantum yields for pheomelanins. Photochem Photobiol 39(6):805–809

    PubMed  CAS  Google Scholar 

  155. Pande CM, Albrecht L, Yang B (2001) Hair photoprotection by dyes. J Cosmet Sci 52:377–389

    PubMed  CAS  Google Scholar 

  156. Meinert K et al (2004) Influence of antioxidants on the sun protection properties of hair care products. J Cosmet Sci 55:S105–S112

    PubMed  CAS  Google Scholar 

  157. Schlosser A (2004) Silicones used in permanent and semi-permanent hair dyes to reduce the fading and color change process of dyed hair occurred by wash out or UV-radiation. J Cosmet Sci 55:S 123–S 131

    CAS  Google Scholar 

  158. Bergfeld WF (1981) Side effects of hair products on the scalp and hair, In: Orfanos C, Montagna W, Stuttgen G (eds) Hair research. Springer-Verlag, Berlin, pp 507–511

    Google Scholar 

  159. Bourgeois-Spinasse J (1981) In: Orfanos C, Montagna W, Stuttgen G (eds) Hair research. Springer-Verlag, Berlin, pp 543–547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarence R. Robbins .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robbins, C.R. (2012). Bleaching and Oxidation of Human Hair. In: Chemical and Physical Behavior of Human Hair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25611-0_5

Download citation

Publish with us

Policies and ethics