Advertisement

Maximum Weight Digital Regions Decomposable into Digital Star-Shaped Regions

  • Matt Gibson
  • Dongfeng Han
  • Milan Sonka
  • Xiaodong Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7074)

Abstract

We consider an optimization version of the image segmentation problem, in which we are given a grid graph with weights on the grid cells. We are interested in finding the maximum weight subgraph such that the subgraph can be decomposed into two ”star-shaped” images. We show that this problem can be reduced to the problem of finding a maximum-weight closed set in an appropriately defined directed graph which is well known to have efficient algorithms which run very fast in practice. We also show that finding a maximum-weight subgraph that is decomposable into m star-shaped objects is NP-hard for some m > 2.

Keywords

Grid Cell Image Segmentation Directed Graph Vertex Cover Grid Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asano, T., Chen, D.Z., Katoh, N., Tokuyama, T.: Efficient algorithms for optimization-based image segmentation. Int. J. Comput. Geometry Appl. 11(2), 145–166 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Chen, D.Z., Chun, J., Katoh, N., Tokuyama, T.: Efficient Algorithms for Approximating a Multi-dimensional Voxel Terrain by a Unimodal Terrain. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 238–248. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, D.Z., Hu, X.S., Luan, S., Wu, X., Yu, C.X.: Optimal Terrain Construction Problems and Applications in Intensity-modulated Radiation Therapy. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 270–283. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Christ, T., Pálvölgyi, D., Stojakovic, M.: Consistent digital line segments. In: Snoeyink, J., de Berg, M., Mitchell, J.S.B., Rote, G., Teillaud, M. (eds.) Symposium on Computational Geometry, pp. 11–18. ACM, New York (2010)Google Scholar
  6. 6.
    Chun, J., Kasai, R., Korman, M., Tokuyama, T.: Algorithms for Computing the Maximum Weight Region Decomposable into Elementary Shapes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1166–1174. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays. Discrete & Computational Geometry 42(3), 359–378 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chun, J., Sadakane, K., Tokuyama, T.: Efficient algorithms for constructing a pyramid from a terrain. IEICE Transactions 89-D(2), 783–788 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-dimensional optimized accociation rules: Scheme, algorithms, and visualization. In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 13–23. ACM Press (1996)Google Scholar
  10. 10.
    Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with optimized two-dimensional association rules. ACM Trans. Database Syst. 26(2), 179–213 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hochbaum, D.S.: A new - old algorithm for minimum-cut and maximum-flow in closure graphs. Networks 37(4), 171–193 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Picard, J.-C.: Maximal closure of a graph and applications to combinatorial problems. Management Science 22(11), 1268–1272 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matt Gibson
    • 1
  • Dongfeng Han
    • 1
  • Milan Sonka
    • 1
  • Xiaodong Wu
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations